Skip to main content

Reinforcement learning suite of process control problems.

Project description


Reinforcement learning environments for process control

Quick start ⚡

Setup a CSTR environment with a setpoint change

import pcgym

# Simulation variables
nsteps = 100
T = 25

# Setpoint
SP = {'Ca': [0.85 for i in range(int(nsteps/2))] + [0.9 for i in range(int(nsteps/2))]} 

# Action and observation Space
action_space = {'low': np.array([295]), 'high': np.array([302])}
observation_space = {'low': np.array([0.7,300,0.8]),'high': np.array([1,350,0.9])}

# Construct the environment parameter dictionary
env_params = {
    'N': nsteps, # Number of time steps
    'tsim':T, # Simulation Time
    'SP' :SP, 
    'o_space' : observation_space, 
    'a_space' : action_space, 
    'x0': np.array([0.8, 330, 0.8]), # Initial conditions [Ca, T, Ca_SP]
    'model': 'cstr_ode', # Select the model
}

# Create environment
env = pcgym.make_env(env_params)

# Reset the environment
obs, state = env.reset()

# Sample a random action
action = env.action_space.sample()

# Perform a step in the environment
obs, rew, done, term, info = env.step(action)

Documentation

You can read the full documentation here!

Installation ⏳

The latest pc-gym version can be installed from PyPI:

pip install pcgym

Examples

TODO: Link example notebooks here

Implemented Process Control Environments 🎛️

Environment Reference Source Documentation
CSTR Hedengren, 2022 Source
First Order Sytem N/A Source
Multistage Extraction Column Ingham et al, 2007 (pg 471) Source
Nonsmooth Control Lim,1969 Source

Citing pc-gym

If you use pc-gym in your research, please cite using the following

@software{pcgym2024,
  author = {Max Bloor and and Jose Neto and Ilya Sandoval and Max Mowbray and Akhil Ahmed and Mehmet Mercangoz and Calvin Tsay and Antonio Del Rio-Chanona},
  title = {{pc-gym}: Reinforcement Learning Envionments for Process Control},
  url = {https://github.com/MaximilianB2/pc-gym},
  version = {0.0.4},
  year = {2024},
}

Other Great Gyms 🔍

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcgym-0.1.5.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

pcgym-0.1.5-py3-none-any.whl (20.8 kB view details)

Uploaded Python 3

File details

Details for the file pcgym-0.1.5.tar.gz.

File metadata

  • Download URL: pcgym-0.1.5.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for pcgym-0.1.5.tar.gz
Algorithm Hash digest
SHA256 191f3b3d379b7d09a0f8828da366512e6a4910a4fb17f445bd3996780294b301
MD5 e832ff5e66dd8f84bf4453a73fdecf2e
BLAKE2b-256 76630c826884602b48ddf4336bcb39ee7d01cde48c86cdb0afc5139180e55e75

See more details on using hashes here.

File details

Details for the file pcgym-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: pcgym-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 20.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for pcgym-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b25a4e22baff9c6c8cb96e3033c037b424077563c30ad506c0419317d81c6e05
MD5 b691bdc375dc1e678f69552863a82a6d
BLAKE2b-256 a7102760bdc6fda5f6d913dd34d7d7d1e6cd94146366f01a182b1bb0c6939554

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page