Skip to main content

protein corona stealth effect prediction

Project description


PyPI Downloads


Python PyPI

tags: protein corona nanoparticles stealth effect machine learning

Overview

PCSER is a computational tool for predicting protein corona stealth effects. It was built using the random forest machine learning approach.

📔 Documentation

Please check https://2003100127.github.io/pcser for how to use PCSER.

🛠️ Installation

PCSER can be installed in the following ways.

  • PyPI (https://pypi.org/project/pcser)

    conda create --name pcser python=3.11
        
    conda activate pcser
    
    pip install pcser --upgrade
    
  • Github

    conda create --name pcser python=3.11
      
    conda activate pcser
    
    git clone https://github.com/2003100127/pcser.git
    
    cd pcser
    
    pip install .
    

🚀 Quick start

import pcser as pcs

pcs.load.evaluate(
    data_ref_fpn='./Proteomics_07262023_rv_C57BL6_spl54.xlsx',
    sv_fp='./',  # None to('data/')
    input_fpn='./example.xlsx',
    model_fpn='./best_cv.joblib',
    sheet_name='a', # a b
    # mfi_ref=[10271.33333, 10747, 10303.33333, 9663.333333, 10056],
    mfi_ref=[3606.333333, 3606.333333, 3606.333333, 3606.333333],

    # is_norm=True,
    # norm_met='minmax',  # minmax std maxabs
    # mode='compo',  # compo annot
    # mark='spl54',  # spl54 spl63
    # version='extended',  # extended old
)

Then, it outputs what is shown below.

# You are using extended sheets.
# You have selected the minmax normalization method.
# Data summary:
# Number of samples: 54
# Number of features: 419
# You have the samples: ['HuApoA1', 'MoApoA1', 'HuClusterin', 'MoClusterin']
# PCSER predictions: 
#              stealth_effect          MFI
# HuApoA1            0.670762  3099.790003
# MoApoA1            0.662108  3189.458730
# HuClusterin        0.634621  3474.270396
# MoClusterin        0.633914  3481.599008
# stealth_effect	MFI
# HuApoA1	0.670762	3099.790003
# MoApoA1	0.662108	3189.458730
# HuClusterin	0.634621	3474.270396
# MoClusterin	0.633914	3481.599008

📄 Citation

@article{PCSER,
    title = {PCSER},
    author = {Jianfeng Sun},
    doi = {xxx},
    url = {https://github.com/2003100127/pcser},
    journal = {xxx}
    year = {2024},
}

🏠 Homepage

📍Oxford University

📧 Reach us

Linkedin Badge Gmail Badge Outlook Badge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcser-0.0.2.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

pcser-0.0.2-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file pcser-0.0.2.tar.gz.

File metadata

  • Download URL: pcser-0.0.2.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure

File hashes

Hashes for pcser-0.0.2.tar.gz
Algorithm Hash digest
SHA256 0fd638f6b45ab43cd0d32d04b45b1d84e4b789c45b0e1235bae0c4120e29ab2a
MD5 77bbb1267a038e0672f29ff6535c27ba
BLAKE2b-256 54d55f082378445f3d70168a6b10892867bc12f34218bcee002d285dc3120fdd

See more details on using hashes here.

File details

Details for the file pcser-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: pcser-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure

File hashes

Hashes for pcser-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3ae8362b786efa87fdc9a2ab790b8ecc3205819fad5d7dc729b10e6daa61a831
MD5 2f9343140962769baba473edb51b8189
BLAKE2b-256 1a97c8c8ec278656b7808caf72e6080db3268cfbcb4b561c8b119cd0f4a6e2d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page