Skip to main content

protein corona stealth effect prediction

Project description


PyPI Downloads


Python PyPI

tags: protein corona nanoparticles stealth effect machine learning

Overview

PCSER is a computational tool for predicting protein corona stealth effects. It was built using the random forest machine learning approach.

📔 Documentation

Please check https://2003100127.github.io/pcser for how to use PCSER.

🛠️ Installation

PCSER can be installed in the following ways.

  • PyPI (https://pypi.org/project/pcser)

    conda create --name pcser python=3.11
        
    conda activate pcser
    
    pip install pcser --upgrade
    
  • Github

    conda create --name pcser python=3.11
      
    conda activate pcser
    
    git clone https://github.com/2003100127/pcser.git
    
    cd pcser
    
    pip install .
    

🚀 Quick start

import pcser as pcs

pcs.load.evaluate(
    data_ref_fpn='./Proteomics_07262023_rv_C57BL6_spl54.xlsx',
    sv_fp='./',  # None to('data/')
    input_fpn='./example.xlsx',
    model_fpn='./best_cv.joblib',
    sheet_name='a', # a b
    # mfi_ref=[10271.33333, 10747, 10303.33333, 9663.333333, 10056],
    mfi_ref=[3606.333333, 3606.333333, 3606.333333, 3606.333333],

    # is_norm=True,
    # norm_met='minmax',  # minmax std maxabs
    # mode='compo',  # compo annot
    # mark='spl54',  # spl54 spl63
    # version='extended',  # extended old
)

Then, it outputs what is shown below.

# You are using extended sheets.
# You have selected the minmax normalization method.
# Data summary:
# Number of samples: 54
# Number of features: 419
# You have the samples: ['HuApoA1', 'MoApoA1', 'HuClusterin', 'MoClusterin']
# PCSER predictions: 
#              stealth_effect          MFI
# HuApoA1            0.670762  3099.790003
# MoApoA1            0.662108  3189.458730
# HuClusterin        0.634621  3474.270396
# MoClusterin        0.633914  3481.599008
# stealth_effect	MFI
# HuApoA1	0.670762	3099.790003
# MoApoA1	0.662108	3189.458730
# HuClusterin	0.634621	3474.270396
# MoClusterin	0.633914	3481.599008

📄 Citation

@article{PCSER,
    title = {PCSER},
    author = {Jianfeng Sun},
    doi = {xxx},
    url = {https://github.com/2003100127/pcser},
    journal = {xxx}
    year = {2024},
}

🏠 Homepage

📍Oxford University

📧 Reach us

Linkedin Badge Gmail Badge Outlook Badge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pcser-0.0.2.tar.gz (25.1 kB view hashes)

Uploaded Source

Built Distribution

pcser-0.0.2-py3-none-any.whl (28.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page