Skip to main content

Perceptual Control Theory with Python

Project description

Perceptual Control Theory

With this library you can create and run simple or complex hierarchies of perceptual control systems as well as make use of the power of the Python platform and its rich set of packages.

In the context of this library a single control system comprising a perceptual, reference, comparator and output function is called a Node. The functions therein can be configured by the user.

A hierarchy is defined by a collection of nodes.

Install

pip install pct

Import

Examples of importing the library functionality.

import pct as p

from pct.hierarchy import Hierarchy

from pct import *

How to use

Import modules from the PCT library.

from pct.nodes import PCTNode

For the purposes of this example define a world model. This would not be required if the real world is used, or a simulation such as OpenAI Gym.

def velocity_model(velocity,  force , mass):
    velocity = velocity + force / mass
    return velocity

# World value
mass = 50

Create a PCTNode, a control system unit comprising a reference, perception, comparator and output function. The default value for the reference is 1. With the history flag set, the data for each iteration is recorded for later plotting.

pctnode = PCTNode(history=True)

Call the node repeatedly to control the perception of velocity. With the verbose flag set, the control values are printed. In this case the printed values are the iteration number, the (velocity) reference, the perception, the error and the (force) output.

for i in range(40):
    print(i, end=" ")
    force = pctnode(verbose=True)
    velocity = velocity_model(pctnode.get_perception_value(), force, mass)
    pctnode.set_perception_value(velocity)
0 0.000 0.000 0.000 0.000 
1 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 
8 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 
10 0.000 0.000 0.000 0.000 
11 0.000 0.000 0.000 0.000 
12 0.000 0.000 0.000 0.000 
13 0.000 0.000 0.000 0.000 
14 0.000 0.000 0.000 0.000 
15 0.000 0.000 0.000 0.000 
16 0.000 0.000 0.000 0.000 
17 0.000 0.000 0.000 0.000 
18 0.000 0.000 0.000 0.000 
19 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 
24 0.000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 
26 0.000 0.000 0.000 0.000 
27 0.000 0.000 0.000 0.000 
28 0.000 0.000 0.000 0.000 
29 0.000 0.000 0.000 0.000 
30 0.000 0.000 0.000 0.000 
31 0.000 0.000 0.000 0.000 
32 0.000 0.000 0.000 0.000 
33 0.000 0.000 0.000 0.000 
34 0.000 0.000 0.000 0.000 
35 0.000 0.000 0.000 0.000 
36 0.000 0.000 0.000 0.000 
37 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 
39 0.000 0.000 0.000 0.000 

Using the plotly library plot the data. The graph shows the perception being controlled to match the reference value.

import plotly.graph_objects as go
fig = go.Figure(layout_title_text="Velocity Goal")
fig.add_trace(go.Scatter(y=pctnode.history.data['refcoll']['constant'], name="ref"))
fig.add_trace(go.Scatter(y=pctnode.history.data['percoll']['variable'], name="perc"))

This following code is only for the purposes of displaying image of the graph generated by the above code.

from IPython.display import Image
Image(url='http://www.perceptualrobots.com/wp-content/uploads/2020/08/pct_node_plot.png')

This shows a very basic example of the use of the PCT library. For more advanced functionality see the API documentation at https://perceptualrobots.github.io/pct/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pct-0.0.32.tar.gz (69.6 kB view details)

Uploaded Source

Built Distribution

pct-0.0.32-py3-none-any.whl (70.4 kB view details)

Uploaded Python 3

File details

Details for the file pct-0.0.32.tar.gz.

File metadata

  • Download URL: pct-0.0.32.tar.gz
  • Upload date:
  • Size: 69.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pct-0.0.32.tar.gz
Algorithm Hash digest
SHA256 59e9dd0c033f54bd91f65c358c7d6abaf96514e273bfa4b6a55dd9ce6a0f17c0
MD5 8348bb16fae7c7dbc53b4e39f5c17e88
BLAKE2b-256 5623938b3703a8cee82cf7c263b8399972bffdec87dcc215e3eeffb259ecd5b2

See more details on using hashes here.

File details

Details for the file pct-0.0.32-py3-none-any.whl.

File metadata

  • Download URL: pct-0.0.32-py3-none-any.whl
  • Upload date:
  • Size: 70.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pct-0.0.32-py3-none-any.whl
Algorithm Hash digest
SHA256 6dedad116c238222adbea05726aca29f2633ba01fbf15432753ff41a1e619045
MD5 ef0e95825d46b35b26fe4ad0f2a3ee98
BLAKE2b-256 839fdf11b511065b058ee88a11abed005598d3a3160a93634215f5b579135c0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page