Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

pd_multiprocessing provides a simple, parallelized function to apply a user defined function rowwise on a Pandas Dataframe.

Project description

Build Status Coverage Status Documentation Status

pd_multiprocessing

pd_multiprocessing provides a simple, parallelized function to apply a user defined function rowwise on a Pandas Dataframe.

Requirements

Documentation

If you want to build the documentation, you need the following packages:

  • Sphinx
  • sphinx_rtd_theme
  • m2r

Installation

You can easily install pd_multiprocessing via

pip install pd-multiprocessing

Usage

A typical usage looks like this

import pandas as pd
from pd_multiprocessing.map import df_map


def twotimes(row):
    row['col2'] = row['col1']*2
    return row


if __name__ == '__main__':
    df = pd.DataFrame.from_dict({'col1': range(100)})
    print(df_map(twotimes, df))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pd-multiprocessing, version 1.0.4
Filename, size File type Python version Upload date Hashes
Filename, size pd_multiprocessing-1.0.4-py3.6.egg (3.8 kB) File type Egg Python version 3.6 Upload date Hashes View hashes
Filename, size pd_multiprocessing-1.0.4-py3-none-any.whl (4.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size pd_multiprocessing-1.0.4.tar.gz (4.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page