Skip to main content

pdLSR: Pandas-aware least squares regression.

Project description

pdLSR by Michelle L. Gill

pdLSR is a library for performing least squares regression. It attempts to seamlessly incorporate this task in a Pandas-focused workflow. Input data are expected in dataframes, and multiple regressions can be performed using functionality similar to Pandas groupby. Results are returned as grouped dataframes and include best-fit parameters, statistics, residuals, and more.

pdLSR has been tested on python 2.7, 3.4, and 3.5. It requires Numpy, Pandas, multiprocess (https://github.com/uqfoundation/multiprocess), and lmfit (https://github.com/lmfit/lmfit-py). All dependencies are installable via pip or conda (see README.md).

A demonstration notebook is provided in the demo directory or the demo can be run via GitHub (see README.md).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pdLSR-0.3.2.tar.gz (334.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page