Skip to main content

Basic Utilities for Protein Structure Data

Project description

PDBBasic

Basic Functions for Protein Structure Data

Install

pip install pdbbasic

Usage

import numpy as np
import torch
import pdbbasic as pdbb

# simple PDB file read
coord1 = pdbb.readpdb('filename.pdb')
# coord1.shape -> (N, 4, 3), N=length, 4=atoms:(N,CA,C,O), 3=coordinates:(x,y,z)

# read PDB with information (chain-id, residue-number, residue-type, occupancy, b-factor)
coord1, info1 = pdbb.readpdb('filename.pdb', with_info=True)

# read mmCIF file
coord1, info1 = pdbb.readmmcif('filename.cif', with_info=True)

# download from PDB
coord1, info1 = pdbb.download('7bqd', with_info=True)

# calc RMSD
ca1 = coord1[:,1]
ca2 = pdbb.readpdb('filename.pdb', CA_only=True)

rmsd_np = pdbb.rmsd(ca1, ca2)

# Kabsch superposition
coo_sup1, coo_sup2 = pdbb.kabsch(ca1, ca2)

# torsion angle
torsion = pdbb.torsion_angles(coord1)
# torsion.shape -> (N, 3), 3=dihedrals:(phi,psi,omega)

# distance matrix
distmat_within = pdbb.distance_matrix(ca1)
distmat_between = pdbb.distance_matrix(ca1, ca2)

# torch Tensor is applicable
rmsd_torch = pdbb.rmsd(torch.Tensor(ca1), torch.Tensor(ca2))

# Frame representation like AlphaFold (translation, rotation)
trans, rot = pdbb.coord_to_frame(coord1)
# trans.shape -> (N, 3), rot.shape -> (N, 3, 3)
frame = trans, rot
coord_recon = pdbb.frame_to_coord(frame)

# FAPE (Frame Aligned Position Error)
frame1 = pdbb.coord_to_frame(coord1)
frame2 = pdbb.coord_to_frame(coord2)
fape = pdbb.FAPE(frame1, frame2)

# batched calculation is applicable
ca_batch1 = np.repeat(np.expand_dims(ca1, axis=0), 100, axis=0)
ca_batch2 = np.repeat(np.expand_dims(ca2, axis=0), 100, axis=0)
bb_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)

rmsd_batch = pdbb.rmsd(ca_batch1, ca_batch2)
sup_batch1, sup_batch2 = pdbb.kabsch(ca_batch1, ca_batch2)
torsion_batch = pdbb.torsion_angles(bb_batch)
distmat_batch = pdbb.distance_matrix(ca_batch1)

coord_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)
frame_batch = pdbb.coord_to_frame(coord_batch)
coord_recon_batch = pdbb.frame_to_coord(frame_batch)
fape_batch = pdbb.FAPE(frame_batch, frame_batch)

# all against all RMSD calculation
rmsd_matrix = pdbb.rmsd_many_vs_many(ca_batch1)

Requirement

  • python3
  • numpy
  • pandas
  • pytorch
  • einops
  • pytorch3d

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pdbbasic-0.7.4-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file pdbbasic-0.7.4-py3-none-any.whl.

File metadata

  • Download URL: pdbbasic-0.7.4-py3-none-any.whl
  • Upload date:
  • Size: 10.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for pdbbasic-0.7.4-py3-none-any.whl
Algorithm Hash digest
SHA256 92f68b0f90ca316455a18cc9a3ccbd41cb5f15fc9847c9424cc7cc2d6be3698f
MD5 db72fb1e72d1ca9202e41b3aba6f918e
BLAKE2b-256 b156d04cab6261e4c45cfd3ab8f3cbb6b1531c21a741464c488e338b15e67f38

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page