Skip to main content

Basic Utilities for Protein Structure Data

Project description

PDBBasic

Basic Functions for Protein Structure Data

Install

pip install pdbbasic

Usage

import numpy as np
import torch
import pdbbasic as pdbb

# simple PDB file read
coord1 = pdbb.readpdb('filename.pdb')
# coord1.shape -> (N, 4, 3), N=length, 4=atoms:(N,CA,C,O), 3=coordinates:(x,y,z)

# read PDB with information (chain-id, residue-number, residue-type, occupancy, b-factor)
coord1, info1 = pdbb.readpdb('filename.pdb', with_info=True)

# read mmCIF file
coord1, info1 = pdbb.readmmcif('filename.cif', with_info=True)

# download from PDB
coord1, info1 = pdbb.download('7bqd', with_info=True)

# calc RMSD
ca1 = coord1[:,1]
ca2 = pdbb.readpdb('filename.pdb', CA_only=True)

rmsd_np = pdbb.rmsd(ca1, ca2)

# Kabsch superposition
coo_sup1, coo_sup2 = pdbb.kabsch(ca1, ca2)

# torsion angle
torsion = pdbb.torsion_angles(coord1)
# torsion.shape -> (N, 3), 3=dihedrals:(phi,psi,omega)

# distance matrix
distmat_within = pdbb.distance_matrix(ca1)
distmat_between = pdbb.distance_matrix(ca1, ca2)

# torch Tensor is applicable
rmsd_torch = pdbb.rmsd(torch.Tensor(ca1), torch.Tensor(ca2))

# Frame representation like AlphaFold (translation, rotation)
trans, rot = pdbb.coord_to_frame(coord1)
# trans.shape -> (N, 3), rot.shape -> (N, 3, 3)
frame = trans, rot
coord_recon = pdbb.frame_to_coord(frame)

# FAPE (Frame Aligned Position Error)
frame1 = pdbb.coord_to_frame(coord1)
frame2 = pdbb.coord_to_frame(coord2)
fape = pdbb.FAPE(frame1, frame2)

# batched calculation is applicable
ca_batch1 = np.repeat(np.expand_dims(ca1, axis=0), 100, axis=0)
ca_batch2 = np.repeat(np.expand_dims(ca2, axis=0), 100, axis=0)
bb_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)

rmsd_batch = pdbb.rmsd(ca_batch1, ca_batch2)
sup_batch1, sup_batch2 = pdbb.kabsch(ca_batch1, ca_batch2)
torsion_batch = pdbb.torsion_angles(bb_batch)
distmat_batch = pdbb.distance_matrix(ca_batch1)

coord_batch = np.repeat(np.expand_dims(coord1, axis=0), 100, axis=0)
frame_batch = pdbb.coord_to_frame(coord_batch)
coord_recon_batch = pdbb.frame_to_coord(frame_batch)
fape_batch = pdbb.FAPE(frame_batch, frame_batch)

# all against all RMSD calculation
rmsd_matrix = pdbb.rmsd_many_vs_many(ca_batch1)

Requirement

  • python3
  • numpy
  • pandas
  • pytorch
  • einops
  • pytorch3d

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pdbbasic-0.7.8.post2.dev0-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file pdbbasic-0.7.8.post2.dev0-py3-none-any.whl.

File metadata

File hashes

Hashes for pdbbasic-0.7.8.post2.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 64240ffa71fafcf7029de6cfe255142a7ab1a8b0d1b836e3b4a2147596f6b7e6
MD5 0c3da7ce2b7a855a9f755e85bf973079
BLAKE2b-256 7fa35d3b85054fc0d7d84be59e73d05d0ddbefc938b18eed8a08c609bc227b2c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page