Skip to main content

A library for processing PDF documents, images, extracting text, parsing TSV to JSON, and merging JSON files

Project description

PDF Processing Library

This library provides tools for processing PDF documents, images, extracting text, parsing TSV files to JSON, and merging JSON files. It includes functionality for text extraction, image conversion, table detection, object detection using YOLO, CVAT task XML generation, TSV to JSON parsing, and JSON merging with hash generation.

Installation

pip install pdf_processing_lib

Usage

from pdf_processing_lib import PDFProcessor, ImageProcessor, TextExtractor, TSVtoJSONParser, JSONMerger

# Process PDFs
pdf_processor = PDFProcessor('path/to/input/directory', 'path/to/output/directory')
pdf_processor.process_directory()

# Process images
image_processor = ImageProcessor('path/to/yolo/model.pt')
image_processor.process_directory('path/to/output/directory')

# Extract text and create CVAT task XML
text_extractor = TextExtractor('path/to/output/directory')
total_files, total_time, cvat_xml_path = text_extractor.process_directory_for_text_extraction()

# Parse TSV files to JSON
tsv_parser = TSVtoJSONParser('path/to/output/directory')
total_files, total_time, avg_time = tsv_parser.process_all_final_directories()

# Merge JSON files and add hash
json_merger = JSONMerger('path/to/json/directory')
output_file, total_entries = json_merger.run('path/to/output/merged.json')

Features

  • Extract text and tables from PDFs
  • Convert PDF pages to JPG images
  • Create versions of PDFs with tables covered
  • Process multiple PDFs in parallel
  • Perform object detection on images using YOLO
  • Process images in batches for efficient memory usage
  • Extract text from specific regions in PDFs
  • Generate CVAT task XML for annotation purposes
  • Parse TSV files to structured JSON format
  • Merge multiple JSON files into a single file with added hash keys

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pdf_processing_lib-0.3.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

pdf_processing_lib-0.3.0-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file pdf_processing_lib-0.3.0.tar.gz.

File metadata

  • Download URL: pdf_processing_lib-0.3.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pdf_processing_lib-0.3.0.tar.gz
Algorithm Hash digest
SHA256 fa88084b8553cfcb52cd5c0923fdfea05e9232a418d44843031b75dfeb0c9a33
MD5 d1c73764146f41bbed99a0a904cc3224
BLAKE2b-256 150b9e21af9e7ab8cb9fd8151c52f86d3665e200efff0357bc31492f926adad3

See more details on using hashes here.

File details

Details for the file pdf_processing_lib-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pdf_processing_lib-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40d8fbd9ea2fd1dbbf60909804116abe46e5342a2133e2706f756f34c5a089bb
MD5 eed60235dc14d0e6b88acd254a29dd22
BLAKE2b-256 d071b983a59a4d888d3ed21f981ae4c5d37d9bc19ef51f742828d6f28e854c73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page