A package to remove watermarks from PDF files
Project description
PDF Watermark Remover
A Python package to remove watermarks from PDF files.
Installation
pip install pdf_watermark_remover
Usage
from pdf_watermark_remover import process_pdf
process_pdf('input.pdf', 'output.pdf')
Update PyPI Version
1.更新 setup.py 中的版本号
setup(
name='your-package-name',
version='0.8.0', # 更新版本号
...
)
2.重新生成分发文件
rm -rf dist
python setup.py sdist bdist_wheel
3.上传新版本
twine upload dist/*
.pypirc 配置
[distutils]
index-servers =
pypi
[pypi]
username = __token__
password = <your-api-token>
setup.py
from setuptools import setup, find_packages
setup(
name='pdf_watermark_remover',
version='0.8.0',
packages=find_packages(),
install_requires=[
'numpy',
'Pillow',
'PyMuPDF',
'reportlab',
],
entry_points={
'console_scripts': [
'pdf_watermark_remover=pdf_watermark_remover.remover:process_pdf',
],
},
author='huapohen',
author_email='694450321@qq.com',
description='A package to remove watermarks from PDF files',
long_description=open('README.md').read(),
long_description_content_type='text/markdown',
url='https://github.com/huapohen/pdf_watermark_remover',
classifiers=[
'Programming Language :: Python :: 3',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
],
python_requires='>=3.6',
)
requirements.txt
# opencv-python-headless
opencv-python
numpy
Pillow
PyMuPDF
reportlabW
准备项目结构
pdf_watermark_remover/
│
├── pdf_watermark_remover/
│ ├── __init__.py
│ ├── remover.py
│
├── setup.py
├── README.md
├── LICENSE
└── requirements.txt
创建项目文件
pdf_watermark_remover/remover.py pdf_watermark_remover/init.py:
from .remover import process_pdf, remove_watermark, pdf_to_images, images_to_pdf
构建和发布包
1.安装必要的工具
pip install setuptools wheel twine
2.构建包
rm -rf dist
python setup.py sdist bdist_wheel
3.发布到PyPI
这里需要配置好.pypirc,填写pypi api token
twine upload dist/*
4.安装
pip install pdf_watermark_remover
5.使用
from pdf_watermark_remover import process_pdf
process_pdf('input.pdf', 'output.pdf')
remover.py
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pip install pymupdf pillow opencv-python reportlab
import io, os, cv2, fitz, tempfile, sys
import numpy as np
from PIL import Image
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
def remove_watermark(img, lower_hsv=160, upper_hsv=255):
# img = cv2.imread("words_watermark.jpg")
# 从一张图像中去除所有白色内容(或在HSV色彩空间中接近白色的内容)
# 用的是HSV色彩空间,数组的三个值分别对应Hue(色调),Saturation(饱和度)和Value(亮度)
lower_hsv = np.array([lower_hsv] * 3) # 大致对应于白色,偏白
upper_hsv = np.array([upper_hsv] * 3) # 最大值,纯白。范围 0~255
# 根据设定的阈值范围,生成一个二值掩码(mask),其中白色部分表示水印,黑色部分表示非水印区域
mask = cv2.inRange(img, lower_hsv, upper_hsv) # 从较亮的灰色(160)到纯白色(255)
mask = cv2.GaussianBlur(
mask, (1, 1), 0
) # 对生成的掩码进行高斯模糊处理,细节处减少噪点
mask_indices = mask == 255 # 获取掩码中所有白色像素的索引,160~255以全部重置为255
img[mask_indices] = [255, 255, 255] # 使用掩码将原始图片中的水印区域设置为纯白色
# quality = [int(cv2.IMWRITE_JPEG_QUALITY), 100] # 保存为最高质量(100)
# cv2.imwrite('clean.jpg', img, quality)
return img
def pdf_to_images(pdf_path, dpi=300):
pdf_document = fitz.open(pdf_path)
images = []
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
zoom = dpi / 72
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img_bytes = pix.tobytes('png')
img = Image.open(io.BytesIO(img_bytes))
images.append(img)
return images
def images_to_pdf(images, output_pdf_path):
c = canvas.Canvas(output_pdf_path, pagesize=letter)
for img in images:
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_img_file:
img.save(temp_img_file, format='PNG')
temp_img_file_path = temp_img_file.name
c.drawImage(temp_img_file_path, 0, 0, width=letter[0], height=letter[1])
c.showPage()
os.remove(temp_img_file_path)
c.save()
def process_pdf(pdf_path, output_pdf_path, lower_hsv=160, upper_hsv=255):
images = pdf_to_images(pdf_path)
cleaned_images = []
for img in images:
img_np = np.array(img)
cleaned_img_np = remove_watermark(img_np, lower_hsv, upper_hsv)
cleaned_img = Image.fromarray(cleaned_img_np)
cleaned_images.append(cleaned_img)
images_to_pdf(cleaned_images, output_pdf_path)
# print(f"处理完成,新的PDF已保存到{output_pdf_path}")
def main():
if len(sys.argv) < 3:
print("Usage: pdf_watermark_remover <input_pdf_path> <output_pdf_path>")
sys.exit(1)
input_pdf_path = sys.argv[1]
output_pdf_path = sys.argv[2]
lower_hsv, upper_hsv = 160, 255
if len(sys.argv) == 4:
lower_hsv = int(sys.argv[3])
if len(sys.argv) == 5:
upper_hsv = int(sys.argv[4])
process_pdf(input_pdf_path, output_pdf_path, lower_hsv, upper_hsv)
if __name__ == "__main__":
'''
# 示例使用
from pdf_watermark_remover import process_pdf
pdf_path = "example.pdf" # 你的PDF文件路径
output_pdf_path = "cleaned_example.pdf" # 保存处理后PDF文件的路径
process_pdf(pdf_path, output_pdf_path)
'''
main()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pdf_watermark_remover-0.8.0.tar.gz
.
File metadata
- Download URL: pdf_watermark_remover-0.8.0.tar.gz
- Upload date:
- Size: 7.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b349b760a82d24a6d4607e0311ea6bdaae7a0e1471910488b8b13a7e807f7df5 |
|
MD5 | b2fe4a8c2662bc912f1e1647d44e374e |
|
BLAKE2b-256 | 30497f0dec0fd64f8111110b51fb5bdc399ac196be45878422bb8a429192c25d |
File details
Details for the file pdf_watermark_remover-0.8.0-py3-none-any.whl
.
File metadata
- Download URL: pdf_watermark_remover-0.8.0-py3-none-any.whl
- Upload date:
- Size: 10.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e532e32b069e4ea0f9bdff25d94f3a8839f5e2f8d1e7fd521dcc15ce0aa62b4 |
|
MD5 | 188f6d3abd112c65d3c572fcbdbf622e |
|
BLAKE2b-256 | a0b1b3cfc0d1d3b300fe94f168362c3969926ee1b18294d55f27abf20c081350 |