Skip to main content

PDF interpolation with Tensorflow

Project description

DOI arxiv

Documentation Status pytest AUR

PDFFlow

PDFFlow is parton distribution function interpolation library written in Python and based on the TensorFlow framework. It is developed with a focus on speed and efficiency, enabling researchers to perform very expensive calculation as quick and easy as possible.

The key features of PDFFlow is the possibility to query PDF sets on GPU accelerators.

Documentation

The documentation for PDFFlow can be consulted in the readthedocs page: pdfflow.readthedocs.io.

Installation

The package can be installed with pip:

python3 -m pip install pdfflow

If you prefer a manual installation just use:

python setup.py install

or if you are planning to extend or develop code just use:

python setup.py develop

⚠ Note: Use the latest version of TensorFlow!

TensorFlow is updated frequently and a later version of TensorFlow will often offer better performance in both GPUs and CPUs. Although it can be made to work with earlier versions, PDFFlow is only supported for TensorFlow>2.1.

Minimal Working Example

Below a minimalistic example where PDFFlow is used to generate a 10 values of the PDF for 2 members for three different flavours.

from pdfflow import mkPDFs
import tensorflow as tf

pdf = mkPDFs("NNPDF31_nnlo_as_0118", [0,2])
x = tf.random.uniform([10], dtype=tf.float64)
q2 = tf.random.uniform([10], dtype=tf.float64)*20 + 10
pid = tf.cast([-1,21,1], dtype=tf.int32)

result = pdf.xfxQ2(pid, x, q2)

Note the usage of the dtype keyword inm the TensorFlow calls. This is used to ensure that float64 is being used all across the program. For convenience, we ship two functions, int_me and float_me which are simply wrappers to tf.cast with the right types.

These wrappers can be used over TensorFlow types but also numpy values:

from pdfflow import mkPDFs, int_me, float_me
import tensorflow as tf
import numpy as np

pdf = mkPDFs("NNPDF31_nnlo_as_0118", [0,2])
x = float_me(np.random.rand(10))
q2 = float_me(tf.random.uniform([10])*20 + 10)
pid = int_me([-1,21,1])

result = pdf.xfxQ2(pid, x, q2)

Citation policy

If you use the package pelase cite the following paper and zenodo references:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pdfflow, version 1.2.1
Filename, size File type Python version Upload date Hashes
Filename, size pdfflow-1.2.1-py3-none-any.whl (31.9 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pdfflow-1.2.1.tar.gz (27.1 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page