

 Skip to main content

Switch to mobile version

 Warning

 Some features may not work without JavaScript. Please try enabling it if you encounter problems.

 Search PyPI

 Search

 	Help
	Sponsors
	Log in
	Register

Menu

 	Help
	Sponsors
	Log in
	Register

 Search PyPI

 Search

 pdfquery 0.1.1

 pip install pdfquery==0.1.1

 Copy PIP instructions

 Newer version available (0.4.3)

Released:
 Apr 16, 2012

 Concise and friendly PDF scraper using JQuery or XPath selectors.

 Navigation

 	

Project description

	

Release history

	

Download files

 Project links

 	

Homepage

 Statistics

GitHub statistics: 	

 Stars:

	

 Forks:

	

 Open issues:

	

 Open PRs:

View statistics for this project via Libraries.io, or by using our public dataset on Google BigQuery

 Meta

 License: MIT License (MIT)

 Author: Jack Cushman

 Maintainers

 Jack.Cushman

 Classifiers

 	
 Development Status
 	

 3 - Alpha

	
 Intended Audience
 	

 Developers

	
 License
 	

 OSI Approved :: MIT License

	
 Operating System
 	

 OS Independent

	
 Programming Language
 	

 Python

	
 Topic
 	

 Text Processing

	

 Utilities

 	

Project description

	

Project details

	

Release history

	

Download files

 Project description

Concise, friendly PDF scraping using JQuery or XPath syntax.

PDFQuery is a light wrapper around pdfminer, lxml and pyquery. It’s designed to reliably extract data from sets of
PDFs with as little code as possible.

Note: This is an initial release. It works for me, but if let me know if it doesn’t work as expected for you.

Table of Contents

	Concise, friendly PDF scraping using JQuery or XPath syntax.

	Quick Start

	Usage

	Data Models

	Finding what you want

	Custom Selectors

	Bulk Data Scraping

	Search Target

	Formatting Functions

	Filtering Functions

	Special Keywords

	with_parent

	with_formatter

	Object Reference

	Public Methods

	Public But Less Useful Methods

	Documentation for Underlying Libraries

Quick Start

The basic idea is to transform a PDF document into an element tree so we can find items with JQuery-like selectors
using pyquery. Suppose we’re trying to extract a name from a set of PDFs, but all we know is that it appears
underneath the words “Your first name and initial” in each PDF:

>>> pdf = pdfquery.PDFQuery("examples/sample.pdf")
>>> pdf.load()
>>> label = pdf.pq(':contains("Your first name and initial")')
>>> left_corner = float(label.attr('x0'))
>>> bottom_corner = float(label.attr('y0'))
>>> name = pdf.pq(':in_bbox("%s, %s, %s, %s")' % (left_corner, bottom_corner-30, left_corner+150, bottom_corner)).text()
>>> name
'John E.'

Note that we don’t have to know where the name is on the page, or what page it’s on,
or how the PDF has it stored internally.

Now let’s extract and format a bunch of data all at once:

>>> pdf = pdfquery.PDFQuery("examples/sample.pdf")
>>> pdf.extract([
 ('with_parent','LTPage[pageid=1]'),
 ('with_formatter', 'text'),

 ('last_name', ':in_bbox("315,680,395,700")'),
 ('spouse', ':in_bbox("170,650,220,680")'),

 ('with_parent','LTPage[pageid=2]'),

 ('oath', ':contains("perjury")', lambda match: match.text()[:30]+"..."),
 ('year', ':contains("Form 1040A (")', lambda match: int(match.text()[-5:-1]))
])

Result:

{'last_name': 'Michaels',
 'spouse': 'Susan R.',
 'year': 2007,
 'oath': 'Under penalties of perjury, I ...',}

Usage

Data Models

PDFQuery works by loading a PDF with pdfminer.Layout, converting the layout to an etree with lxml.etree,
and then applying a pyquery wrapper. All three underlying libraries are exposed, so you can use any of their
interfaces to get at the data you want.

First pdfminer opens the document and reads its layout.
You can access the pdfminer document at pdf.doc:

>>> pdf = pdfquery.PDFQuery("examples/sample.pdf")
>>> pdf.doc
<pdfminer.pdfparser.PDFDocument object at 0xd95c90>
>>> pdf.doc.catalog # fetch attribute of underlying pdfminer document
{'JT': <PDFObjRef:14>, 'PageLabels': <PDFObjRef:10>, 'Type': /Catalog, 'Pages': <PDFObjRef:12>, 'Metadata': <PDFObjRef:13>}

Next the layout is turned into an lxml.etree with a pyquery wrapper. After you call pdf.load() (by far the most
expensive operation in the process), you can access the etree at pdf.tree, and the pyquery wrapper at pdf.pq:

>>> pdf.load()
>>> pdf.tree
<lxml.etree._ElementTree object at 0x106a285f0>
>>> pdf.tree.write("test2.xml", pretty_print=True, encoding="utf-8")
>>> pdf.tree.xpath('//*/LTPage')
[<Element LTPage at 0x994cb0>, <Element LTPage at 0x994a58>]
>>> pdf.pq('LTPage[pageid=1] :contains("Your first name")')
[<LTTextLineHorizontal>]

You’ll save some time and memory if you call load() with only the page numbers you need. For example:

>>> pdf.load(0, 2, 3, range(4,8))

Under the hood, pdf.tree is basically an XML representation of the layout tree generated by pdfminer.pdfinterp. By
default the tree is processed to combine individual character nodes, remove extra spaces,
and sort the tree spatially. You can always get back to the original pdfminer Layout object from an element fetched
by xpath or pyquery:

>>> pdf.pq(':contains("Your first name and initial")')[0].layout
<LTTextLineHorizontal 143.651,714.694,213.083,721.661 u'Your first name and initial\n'>

Finding what you want

PDFs are internally messy, so it’s usually not helpful to find things based on document structure or element classes
the way you would with HTML. Instead the most reliable selectors are the static labels on the page,
which you can find by searching for their text contents, and physical location on the page. PDF coordinates are given
in points (72 to the inch) starting from the bottom left corner. PDFMiner (and so PDFQuery) describes page locations
in terms of bounding boxes, or bboxes. A bbox consists of four coordinates: the X and Y of the lower left
corner, and the X and Y of the upper right corner.

If you’re scraping text that’s always in the same place on the page, the easiest way is to use Acrobat Pro’s
Measurement Tool, Photoshop, or a similar tool to measure distances (in points) from the lower left corner of the
page, and use those distances to craft a selector like :in_bbox("x0,y0,x1,y1") (see below for more on in_bbox).

If you’re scraping text that might be in different parts of the page, the same basic technique applies,
but you’ll first have to find an element with consistent text that appears a consistent distance from the text you
want, and then calculate the bbox relative to that element. See the Quick Start for an example of that approach.

If both of those fail, your best bet is to dump the xml using `pdf.tree.write(filename, pretty_print=True)`,
and see if you can find any other structure, tags or elements that reliably identify the part you’re looking for.
This is also helpful when you’re trying to figure out why your selectors don’t match …

Custom Selectors

The version of pyquery returned by pdf.pq supports some PDF-specific selectors to find elements by location on the
page.

	:in_bbox(“x0,y0,x1,y1”): Matches only elements that fit entirely within the given bbox.

	:overlaps_bbox(“x0,y0,x1,y1”): Matches any elements that overlap the given bbox.

If you need a selector that isn’t supported, you can write a filtering function returning a boolean:

>>> def big_elements():
 return float(this.get('width',0)) * float(this.get('height',0)) > 40000
>>> pdf.pq('LTPage[page_index=1] *').filter(big_elements)
[<LTTextBoxHorizontal>, <LTRect>, <LTRect>]

(If you come up with any particularly useful filters, patch them into pdfquery.py as selectors and submit a pull
request …)

Bulk Data Scraping

Often you’re going to want to grab a bunch of different data from a PDF, using the same repetitive process:
(1) find an element of the document using a pyquery selector or Xpath; (2) parse the resulting text; and (3) store it
in a dict to be used later.

The extract method simplifies that process. Given a list of keywords and selectors:

>>> pdf.extract([
 ('last_name', ':in_bbox("315,680,395,700")'),
 ('year', ':contains("Form 1040A (")', lambda match: int(match.text()[-5:-1]))
])

the `extract` method returns a dictionary (by default) with a pyquery result set for each keyword,
optionally processed through the supplied formatting function. In this example the result is:

{'last_name': [<LTTextLineHorizontal>], 'year': 2007}

(It’s often helpful to start with ('with_formatter', 'text') so you get results like “Michaels” instead of
[<LTTextLineHorizontal>]. See Special Keywords below for more.)

Search Target

By default, extract searches the entire tree (or the part of the document loaded earlier by load(),
it it was limited to particular pages). If you want to limit the search to a part of the tree that you fetched with
pdf.pq() earlier, pass that in as the second parameter after the list of searches.

Formatting Functions

Notice that the ‘year’ example above contains an optional third paramater – a formatting function. The formatting
function will be passed a pyquery match result, so lambda match: match.text() will return the text contents of the
matched elements.

Filtering Functions

Instead of a string, the selector can be a filtering function returning a boolean:

>>> pdf.extract([('big', big_elements)])
{'big': [<LTPage>, <LTTextBoxHorizontal>, <LTRect>, <LTRect>, <LTPage>, <LTTextBoxHorizontal>, <LTRect>]}

(See Custom Selectors above for how to define functions like big_elements.)

Special Keywords

extract also looks for two special keywords in the list of searches that set defaults for the searches listed
afterward. Note that you can include the same special keyword more than once to change the setting, as demonstrated
in the Quick Start section. The keywords are:

with_parent

The with_parent keyword limits the following searches to children of the parent search. For example:

>>> pdf.extract([
 ('with_parent','LTPage[page_index=1]'),
 ('last_name', ':in_bbox("315,680,395,700")') # only matches elements on page 1
])

with_formatter

The with_formatter keyword sets a default formatting function that will be called unless a specific one is supplied.
For example:

('with_formatter', lambda match: int(match.text()))

will attempt to convert all of the following search results to integers. If you supply a string instead of a function,
it will be interpreted as a method name to call on the pyquery search results. For example, the following two lines
are equivalent:

('with_formatter', lambda match: match.text())
('with_formatter', 'text')

If you want to stop filtering results, you can use:

('with_formatter', None)

Object Reference

Public Methods

PDFQuery(filename,
 merge_tags=('LTChar', 'LTAnon'),
 round_floats=True,
 round_digits=3,
 input_text_formatter=None,
 normalize_spaces=True,
 resort=True)

Initialization function. Usually you’ll only need to pass in the filename. The rest of the arguments control
preprocessing of the element tree:

	merge_tags: consecutive runs of these elements will be merged together, with the text of following elements
appended to the first element. This is useful for keeping the size of the tree down,
but it might help to turn it off if you want to select individual characters regardless of their containers.

	round_floats and round_digits: if round_floats is True, numbers will be rounded to round_digits places. This is
almost always good.

	input_text_formatter: a function that takes a string and returns a modified string,
to be applied to the text content of elements.

	normalize_spaces: if True (and input_text_formatter isn’t otherwise set), sets input_text_formatter to replace s+
with a single space.

	resort: if True, elements will be sorted such that any element fully within the bounding box of another element
becomes a child of that element.

extract(searches,
 tree=None,
 as_dict=True)

See “Bulk Data Scraping.”

	searches: list of searches to run, each consisting of a keyword, selector, and optional formatting function.

	tree: pyquery tree to run searches against. By default, targets entire tree loaded by pdf.load()

	as_dict: if changed to False, will return a list instead of a dict to preserve the order of the results.

load(*page_numbers)

Initialize the pdf.tree and pdf.pq objects. This will be called implicitly by pdf.extract(),
but it’s more efficient to call it explicitly with just the page numbers you need. Page numbers can be any
combination of integers and lists, e.g. pdf.load(0,2,3,[4,5,6],range(10,15)).

Public But Less Useful Methods

These are mostly used internally, but might be helpful sometimes …

get_layout(page)

Given a page number (zero-indexed) or pdfminer PDFPage object, return the LTPage layout object for that page.

get_layouts()

Return list of all layouts (equivalent to calling get_layout() for each page).

get_page(page_number)

Given a page number, return the appropriate pdfminer PDFPage object.

get_pyquery(tree=None, page_numbers=[])

Wrap a given lxml element tree in pyquery.
If no tree is supplied, will generate one from given page numbers, or all page numbers.

get_tree(*page_numbers)

Generate an etree for the given page numbers. *page_numbers can be the same form as in load().

Documentation for Underlying Libraries

	PDFMiner (pdf.doc): pdfminer_homepage, pdfminer_documentation.

	LXML.etree (pdf.tree): lxml_homepage, tutorial.

	PyQuery (pdf.pq): pyquery_documentation.

 Project details

 Project links

 	

Homepage

 Statistics

GitHub statistics: 	

 Stars:

	

 Forks:

	

 Open issues:

	

 Open PRs:

View statistics for this project via Libraries.io, or by using our public dataset on Google BigQuery

 Meta

 License: MIT License (MIT)

 Author: Jack Cushman

 Maintainers

 Jack.Cushman

 Classifiers

 	
 Development Status
 	

 3 - Alpha

	
 Intended Audience
 	

 Developers

	
 License
 	

 OSI Approved :: MIT License

	
 Operating System
 	

 OS Independent

	
 Programming Language
 	

 Python

	
 Topic
 	

 Text Processing

	

 Utilities

 Release history

 Release notifications |
 RSS feed

 0.4.3

 Mar 27, 2016

 0.4.2

 Feb 7, 2016

 0.4.1

 Dec 22, 2015

 0.4.0

 Dec 22, 2015

 0.3.1

 Jul 22, 2015

 0.3.0

 Jun 26, 2015

 0.2.7

 Sep 22, 2014

 0.2.6

 Jul 5, 2014

 0.2.5

 Jun 30, 2014

 0.2.4

 May 29, 2014

 0.2.3

 May 15, 2014

 0.2.2

 Dec 5, 2013

 0.2.1

 Nov 30, 2013

 0.2

 Nov 3, 2013

 0.1.3

 Apr 16, 2012

 0.1.2

 Apr 16, 2012

 This version

 0.1.1

 Apr 16, 2012

 0.1.0

 Apr 16, 2012

 Download files

 Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

 pdfquery-0.1.1.tar.gz

 (54.2 kB
 view hashes)

 Uploaded
 Apr 16, 2012

 source

 Close

Hashes for pdfquery-0.1.1.tar.gz

 Hashes for pdfquery-0.1.1.tar.gz	Algorithm	Hash digest	
	SHA256	205ce1dd30deb25e4b12878f6e15a59eed54972451172c6f391fdabdc8b05930	

Copy

	MD5	8114c1529fe295b6cd8ed9762e89278e	

Copy

	BLAKE2b-256	0d05c1bdc61d679f4c096721adea61df8cdbe5cde14db50ab100ff669405ab97	

Copy

 Close

 Help

 	Installing packages
	Uploading packages
	User guide
	Project name retention
	FAQs

 About PyPI

 	PyPI on Twitter
	Infrastructure dashboard
	Statistics
	Logos & trademarks
	Our sponsors

 Contributing to PyPI

 	Bugs and feedback
	Contribute on GitHub
	Translate PyPI
	Sponsor PyPI
	Development credits

 Using PyPI

 	Code of conduct
	Report security issue
	Privacy policy
	Terms of use
	Acceptable Use Policy

 Status:
 all systems operational

Developed and maintained by the Python community, for the Python community.

 Donate today!

 "PyPI", "Python Package Index", and the blocks logos are registered trademarks of the Python Software Foundation.

 © 2024 Python Software Foundation

 Site map

Switch to desktop version

 	

 English

	

 español

	

 français

	

 日本語

	

 português (Brasil)

	

 українська

	

 Ελληνικά

	

 Deutsch

	

 中文 (简体)

	

 中文 (繁體)

	

 русский

	

 עברית

	

 esperanto

 Supported by

 AWS

 Cloud computing and Security Sponsor

 Datadog

 Monitoring

 Fastly

 CDN

 Google

 Download Analytics

 Microsoft

 PSF Sponsor

 Pingdom

 Monitoring

 Sentry

 Error logging

 StatusPage

 Status page

