Skip to main content

New methods for pandas DataFrame and Series.

Project description

pdpatch

pdpatch adds methods to pandasDataFrame and Series for a faster data science pipeline. It also defines drop-in replacements for seaborn and plotly.express that automatically label axes with nicer titles. We use nbdev to build this project.

Install

pip install pdpatch

How to use

from pdpatch.all import *

Interactive Method .less()

Alt Text

Automatically Rename snake_case columns in plotly.express and seaborn

import pandas as pd
from pdpatch.express import *
df = pd.DataFrame({'time__s__': range(10), 'position__m__': [i**1.3 for i in range(10)], 'speed__m/s__': 10*[1]})
#df = pd.DataFrame({'time__s__': range(10), 'position__m__': range(10)})
px.scatter(df, x='time__s__', y='position__m__').show('png')

from pdpatch.seaborn import sns
sns.scatterplot(data=df, x='time__s__', y='position__m__');

Add Altair-like Operation to plotly Figures

fig = px.scatter(df,x='time__s__', y='time__s__') | px.scatter(df,x='time__s__', y=['position__m__', 'speed__m/s__'])
fig
Unable to display output for mime type(s): application/vnd.plotly.v1+json
fig = px.scatter(df,x='time__s__', y='time__s__') / px.scatter(df,x='time__s__', y=['position__m__', 'speed__m/s__'])
fig
Unable to display output for mime type(s): application/vnd.plotly.v1+json
fig = px.scatter(df,x='time__s__', y='time__s__') | px.scatter(df,x='time__s__', y=['position__m__', 'speed__m/s__'])
fig / fig
Unable to display output for mime type(s): application/vnd.plotly.v1+json

Shorter methods

df.rename(columns={'col_1': 'new_name'})->df.renamec('col_1', 'new_name')

df = dummydf()
df.renamec('col_1', 'new_name').to_html()
new_name col_2
0 100 a
1 101 b
2 102 c
3 103 d
4 104 e

Functions as methods

df.len()
5

New methods

df.col_1.minmax
(100, 104)

Utility functions

df = dummydf()
df.to_html()
col_1 col_2
0 100 a
1 101 b
2 102 c
3 103 d
4 104 e

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pdpatch-0.1.8.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

pdpatch-0.1.8-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file pdpatch-0.1.8.tar.gz.

File metadata

  • Download URL: pdpatch-0.1.8.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pdpatch-0.1.8.tar.gz
Algorithm Hash digest
SHA256 8028b723056c8e30d1093201be21a40e70c781d47af22d49e6846d6bc4c264f9
MD5 a1ae7823b3dd6c9ed4a762aa7f763090
BLAKE2b-256 03fe710dfdf7d5033aee58f7cdf7db917e290fbb0f377c9172917a94a614e8a9

See more details on using hashes here.

File details

Details for the file pdpatch-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: pdpatch-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pdpatch-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 eb81ccf7d5ae0070704e9330f20a1d1ea2edab19373a3bd6b85f8fc39be49f35
MD5 2fce15401ac7669fc88d014feb6288c6
BLAKE2b-256 c6f9535d8ece1f97bf0313a1f6a93204adc88f51c16ddf9a2a04b8a8e0f2c399

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page