Skip to main content

自动决策树规则挖掘工具包

Project description

自动决策树规则挖掘工具包

在笔者金融风控的日常工作中,很多时候需要根据数据集内的诸多特征(有很多其他称呼,比如因子、变量、自变量、解释变量等)来挖掘一些有用的规则和组合策略,在保证通过率的基础上尽可能多的拒绝坏客户。面对成千上万的特征,如何从数据集中找到有效的规则和组合策略,一直以来都是金融风控搬砖工的日常工作。 pdtr 旨在帮助读者快速从高维数据中提取出有效的规则和组合策略。

仓库地址:https://github.com/itlubber/pdtr

博文地址:https://itlubber.art/archives/auto-strategy-mining

微信公共号推文:https://mp.weixin.qq.com/s/8s785MfmVznNgQyy38YnWw

pipy包:https://pypi.org/project/pdtr/

交流

微信 微信公众号
itlubber.png itlubber_art.png
itlubber itlubber_art

背景简介

金融场景风险大致可以概括为三种:系统性风险、欺诈风险(无还款意愿)、信用风险(无还款能力),而作为一名风控搬砖工,日常工作中有大量的数据挖掘工作,如何从高维数据集中挖掘出行之有效的规则、策略及模型来防范欺诈风险和信用风险每个搬砖工的基操。本仓库由笔者基于网上开源的一系列相关知识,结合实际工作中遇到的实际需求,整理得到。旨在为诸位仁兄提供一个便捷、高效、赏心悦目的决策树组合策略挖掘报告,及一系列能够实际运用到风险控制上的策略。

项目结构

pdtr
.
|   README.md                           # 说明文档
|   setup.py                            # 打包发布文件
|   LICENSE                             # 开源协议
|   requirements.txt                    # 项目依赖包
+---examples                            # 演示样例
|   |   combine_rules_cache             # 缓存文件
|   |   combine_rules_cache.svg         # 缓存文件
|   |   pdtr_samplts.ipynb              # 演示样例程序
|   \---model_report                    # 模型报告输出文件夹
|       |   决策树组合策略挖掘.xlsx        # 策略挖掘报告
|       +---auto_mining_rules           # 组合策略可视化存储文件夹
|       |       combiner_rules_0.png    # 决策树可视化图片
|       |       ......
|       \---bin_plots                   # 简单策略可视化存储文件夹
|               bin_vars_A.png          # 变量分箱可视化图片
|               ......
\---pdtr                                # PDTR 源码包
        template.xlsx                   # excel 模版文件
        excel_writer.py                 # excel写入公共方法
        matplot_chinese.ttf             # matplotlib 中文字体
        transforme.py                   # 策略挖掘方法

环境准备

创建虚拟环境(可选)

  • 通过conda创建虚拟环境
>> conda create -n score python==3.8.13

Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 4.10.3
  latest version: 23.3.1

Please update conda by running

    $ conda update -n base -c defaults conda



## Package Plan ##

  environment location: /Users/lubberit/anaconda3/envs/score

  added / updated specs:
    - python==3.8.13


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    ca-certificates-2023.01.10 |       hecd8cb5_0         121 KB
    ncurses-6.4                |       hcec6c5f_0        1018 KB
    openssl-1.1.1t             |       hca72f7f_0         3.3 MB
    pip-23.0.1                 |   py38hecd8cb5_0         2.5 MB
    python-3.8.13              |       hdfd78df_1        10.8 MB
    setuptools-66.0.0          |   py38hecd8cb5_0         1.2 MB
    sqlite-3.41.2              |       h6c40b1e_0         1.2 MB
    wheel-0.38.4               |   py38hecd8cb5_0          65 KB
    xz-5.4.2                   |       h6c40b1e_0         372 KB
    ------------------------------------------------------------
                                           Total:        20.5 MB

The following NEW packages will be INSTALLED:

  ca-certificates    pkgs/main/osx-64::ca-certificates-2023.01.10-hecd8cb5_0
  libcxx             pkgs/main/osx-64::libcxx-14.0.6-h9765a3e_0
  libffi             pkgs/main/osx-64::libffi-3.3-hb1e8313_2
  ncurses            pkgs/main/osx-64::ncurses-6.4-hcec6c5f_0
  openssl            pkgs/main/osx-64::openssl-1.1.1t-hca72f7f_0
  pip                pkgs/main/osx-64::pip-23.0.1-py38hecd8cb5_0
  python             pkgs/main/osx-64::python-3.8.13-hdfd78df_1
  readline           pkgs/main/osx-64::readline-8.2-hca72f7f_0
  setuptools         pkgs/main/osx-64::setuptools-66.0.0-py38hecd8cb5_0
  sqlite             pkgs/main/osx-64::sqlite-3.41.2-h6c40b1e_0
  tk                 pkgs/main/osx-64::tk-8.6.12-h5d9f67b_0
  wheel              pkgs/main/osx-64::wheel-0.38.4-py38hecd8cb5_0
  xz                 pkgs/main/osx-64::xz-5.4.2-h6c40b1e_0
  zlib               pkgs/main/osx-64::zlib-1.2.13-h4dc903c_0


Proceed ([y]/n)? y


Downloading and Extracting Packages
sqlite-3.41.2        | 1.2 MB    | ################################################################################################### | 100% 
wheel-0.38.4         | 65 KB     | ################################################################################################### | 100% 
openssl-1.1.1t       | 3.3 MB    | ################################################################################################### | 100% 
python-3.8.13        | 10.8 MB   | ################################################################################################### | 100% 
setuptools-66.0.0    | 1.2 MB    | ################################################################################################### | 100% 
ncurses-6.4          | 1018 KB   | ################################################################################################### | 100% 
xz-5.4.2             | 372 KB    | ################################################################################################### | 100% 
ca-certificates-2023 | 121 KB    | ################################################################################################### | 100% 
pip-23.0.1           | 2.5 MB    | ################################################################################################### | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate score
#
# To deactivate an active environment, use
#
#     $ conda deactivate
  • 通过pyenv创建虚拟环境
# 安装环境
>> pyenv install -v 3.8.13
# 启动环境
>> pyenv local 3.8.13
# 卸载环境
>> pyenv uninstall 3.8.13

安装项目依赖

>> pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

Looking in indexes: http://mirrors.aliyun.com/pypi/simple/
......
Installing collected packages: webencodings, six, pytz, colour, zipp, tomli, tinycss2, threadpoolctl, python-dateutil, pyparsing, pycparser, pluggy, pillow, packaging, numpy, kiwisolver, joblib, iniconfig, graphviz, fonttools, exceptiongroup, et-xmlfile, defusedxml, cycler, scipy, pytest, patsy, pandas, openpyxl, importlib-resources, cssselect2, contourpy, cffi, statsmodels, scikit-learn, matplotlib, cairocffi, dtreeviz, category-encoders, CairoSVG
Successfully installed CairoSVG-2.7.0 cairocffi-1.5.1 category-encoders-2.6.0 cffi-1.15.1 colour-0.1.5 contourpy-1.0.7 cssselect2-0.7.0 cycler-0.11.0 defusedxml-0.7.1 dtreeviz-2.2.1 et-xmlfile-1.1.0 exceptiongroup-1.1.1 fonttools-4.39.4 graphviz-0.20.1 importlib-resources-5.12.0 iniconfig-2.0.0 joblib-1.2.0 kiwisolver-1.4.4 matplotlib-3.7.1 numpy-1.22.2 openpyxl-3.0.7 packaging-23.1 pandas-1.5.3 patsy-0.5.3 pillow-9.5.0 pluggy-1.0.0 pycparser-2.21 pyparsing-3.0.9 pytest-7.3.1 python-dateutil-2.8.2 pytz-2023.3 scikit-learn-1.2.2 scipy-1.10.1 six-1.11.0 statsmodels-0.14.0 threadpoolctl-3.1.0 tinycss2-1.2.1 tomli-2.0.1 webencodings-0.5.1 zipp-3.15.0

PDTR 安装

pip install pdtr

版本介绍

  • 0.1.0

仅包含决策树策略挖掘相关工具

  • 0.1.1

除版本 0.1.0 中的决策树挖掘相关工具以外,新增了基于 toadoptbinning 的单变量策略挖掘相关方法

  • 0.1.2

0.1.1 的基础上增加了部分方法的文档注释

运行样例

  • 导入相关依赖
import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

try:
    from pdtr import ParseDecisionTreeRules
except ModuleNotFoundError:
    import sys
    
    sys.path.append("../")
    from pdtr import ParseDecisionTreeRules
    
np.random.seed(1)
  • 数据集加载
feature_map = {}
n_samples = 10000
ab = np.array(list('ABCDEFG'))

data = pd.DataFrame({
    'A': np.random.randint(10, size = n_samples),
    'B': ab[np.random.choice(7, n_samples)],
    'C': ab[np.random.choice(2, n_samples)],
    'D': np.random.random(size = n_samples),
    'target': np.random.randint(2, size = n_samples)
})
  • 数据集拆分
train, test = train_test_split(data, test_size=0.3, shuffle=data["target"])
  • 决策树自动规则挖掘
pdtr_instance = ParseDecisionTreeRules(target="target", max_iter=8, output="model_report/决策树组合策略挖掘.xlsx")
pdtr_instance.fit(train, lift=0., max_depth=2, max_samples=1., verbose=False, max_features="auto")
  • 规则验证
all_rules = pdtr_instance.insert_all_rules(test=test)
  • 导出策略挖掘报告
pdtr_instance.save()
  • 挖掘报告

examples/决策树组合策略挖掘.xlsx

参考

https://github.com/itlubber/LogisticRegressionPipeline

https://github.com/itlubber/itlubber-excel-writer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pdtr-0.1.5.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

pdtr-0.1.5-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file pdtr-0.1.5.tar.gz.

File metadata

  • Download URL: pdtr-0.1.5.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.8

File hashes

Hashes for pdtr-0.1.5.tar.gz
Algorithm Hash digest
SHA256 a6d7f72657c02cb5d7e0e1926d781fd8d7a6ea914c29e805a091f85aebf90b4b
MD5 7aa89d53b9a0ae08af97bdaef65040af
BLAKE2b-256 803a1aa227df6576d482a7b667e4fd485411ac1c6486ff275916953d076cfcf6

See more details on using hashes here.

File details

Details for the file pdtr-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: pdtr-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.8

File hashes

Hashes for pdtr-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 bdfb6513120dea30f503fe3bdd50be4e35bbfb6e2102b71668a3694ec3f559b3
MD5 e6a099b069537b7bd9352e46626e27aa
BLAKE2b-256 d457133ca656d2f5120ed7737239a7bc2462307520226c97b79e23944295241e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page