Skip to main content

A Python package for writing multithreaded code.

Project description

Build PyPI version

Pearpy

The Python package for (pear)allelizing your tasks across multiple CPU threads.

Installation

The latest version of Pearpy can be installed with:

pip install pearpy

To stay up to date with Pearpy's releases, visit the official page on PyPi!

Usage

  1. Create a Pear() object. This will be a wrapper for all of your multithreaded processes.
  2. Identify the functions on which you would like to paralleilze computation.
  3. Add your tasks to the Pear object. If a potential race condition is detected, an error will be thrown.
  4. Run the paraellelized processes.

Example

from pearpy.pear import Pear

# First function to be parallelized
def t1(num1, num2):
    print('t1: ', num1 + num2)

# Second function to be paralellized
def t2(num):
    print('t2: ', num)

# Create pear object, add threads, and run
pear = Pear()
pear.add_thread(t1, [4, 5])
pear.add_thread(t2, 4)
pear.run()

Race Condition Handling

When multiple threads utilize the same function, Pear will automatically generate locks for each resource. This allows developers to utilize Pear's multithreading without having to worry about inaccurate data caused by race conditions. The following example shows how race conditions are handled:

from pearpy.pear import Pear

global_var = 10

# This function reads from and writes to a global variable
def t_duplicated(num):
    global global_var
    print('t_duplicated: ', num + global_var)
    global_var += 1

# Pear object created with two threads accessing a shared resource
# A race condition is detected and locks are generated
pear = Pear()
pear.add_thread(t_duplicated, 1) # This should return 11 because 1 + 10 = 11
pear.add_thread(t_duplicated, 1) # This should return 12 because global_var is incremented
pear.run()

##########
# OUTPUT #
##########
t_duplicated: 11
t_duplicated: 12

Benchmarks and Tests

Benchmarks can be examined via the make benchmark command. This will display the threaded vs unthreaded runtimes on a set script, along with the percent improvement between the two. Here is an example of what the benchmarks should look like:

----------------------------------------------------------------------
THREADED BENCHMARK
3.8507602214813232 s
----------------------------------------------------------------------
UNTHREADED BENCHMARK
13.90523624420166 s
----------------------------------------------------------------------
Improvement:  361.1036638072611 %
.
----------------------------------------------------------------------
Ran 1 test in 17.757s

OK

To run tests, utilize the make test command. This will output the results of the functions called in the /tests/test_pear.py script, along with the status of the tests themselves. The console will display 'OK' if the tests are passing.

Contributing

Pear is open source and contributions from anyone are welcome. To contribute to this project, please submit issues and pull requests via GitHub. In order to successfully merge a pull request, all unit tests must be passed when run via make test. Thank you!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pearpy-0.1.3.tar.gz (4.9 kB view details)

Uploaded Source

File details

Details for the file pearpy-0.1.3.tar.gz.

File metadata

  • Download URL: pearpy-0.1.3.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.5

File hashes

Hashes for pearpy-0.1.3.tar.gz
Algorithm Hash digest
SHA256 6ccb01ada483a92e53bd5b662fe65e603ae64de2063f207f61d6c6686a6d91b7
MD5 92b21e2b664d4d9ace429ecba8cf4464
BLAKE2b-256 e4fa3847d8ff9b4455835634d3176469e60d14a0b0a9d8df37e76d0f692a49b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page