Python Eplet Load Calculator
Project description
PELC (Python Eplet Load Calculator)
Overview
PELC is a Python package designed to calculate efficiently the HLA Eplet Load (based on the
EpRegistry database) between donors and recipients by loading in a pandas.DataFrame
in eplet_comparison.compute_epletic_load
the recipients' and donors' typings. See minimal reproducible example for
more details.
Getting started
Install from PyPI (recommended)
To use pelc
, run pip install pelc
in your terminal.
Usage
a. Comparing two alleles
Here is a minimal example of how to use pelc
to compare two alleles:
from pelc.simple_comparison import simple_comparison
simple_comparison(
"A*68:01",
"A*68:02",
"output", # file will be saved as output.csv in the current directory
verifiedonly=False, # if True, only verified eplets will be considered, otherwise all eplets will be considered
interlocus2=True # doesn't matter for class I alleles
)
In the output.csv
file created in the current directory, you will find two rows: "In A*68:02 but not in
A*68:01" and "In A*68:01 but not in A*68:02".
b. Batch mode
Here is a minimal example with the file Template.xlsx (click to download):
import pandas as pd
from pelc import batch_eplet_comp, batch_eplet_comp_aux, output_type
if __name__ == "__main__":
input_path: str = "Template.xlsx"
output_path: str = "MyOutput"
input_df: pd.DataFrame = pd.read_excel(
input_path,
sheet_name="My Sheet",
index_col="Index"
)
donordf: pd.DataFrame
recipientdf: pd.DataFrame
donordf, recipientdf = batch_eplet_comp_aux.split_dataframe(input_df)
batch_eplet_comp.compute_epletic_load(
donordf,
recipientdf,
output_path,
output_type.OutputType.DETAILS_AND_COUNT,
class_i=True, # Compute class I eplets comparison?
class_ii=True, # Compute class II eplets comparison?
verifiedonly=False, # How should the epletic charge be computed? Verified eplets only? Or all eplets?
exclude=None, # list of indices to exclude
interlocus2=True # whether or not to take into account interlocus eplets for HLA of class II
)
Note that if a typing is unknown, one can use A*
, B*
, ..., DPB1*
as the allele name for both recipients and
donors. If the allele is unknown for only of the two individuals, it is necessary to use A*
, B*
, ..., DPB1*
for
both individuals otherwise the eplet mismatch computation will not be performed for this donor / recipient pair.
Advanced usage:
a. Not taking into account all loci (if they are not typed for example)
If one wants to determine the eplet mismatches between a donor and a recipient but without taking into account
a certain locus, one can use A*
, B*
, ..., DPB1*
as the allele name for both recipients and donors on this locus
and the eplet mismatch computation will only take into account the loci filled in.
b. Not creating a file but generating a pandas.DataFrame
If one wants to generate a pandas.DataFrame
directly, the output_path
argument of simple_comparison
can be
set to None
. The pandas.DataFrame
will be returned by the function. Same goes for compute_epletic_load
.
Exit codes:
- 55: an eplet did not match the regular expression '^\d+' (ABC, DR, DQ or DP) and it also did not match the regular
expression '^.[pqr]*(\d+)' (interlocus2) either.
Unit tests
Tested on Python 3.10.2
& Python 3.11.1
.
platform win32 -- Python 3.10.2, pytest-7.2.0, pluggy-1.0.0
plugins: anyio-3.6.2, mypy-0.10.3
collected 34 items
unit_tests_mypy.py .. [ 5%]
unit_tests_simple.py . [ 8%]
pelc\__init__.py . [ 11%]
pelc\_open_epregistry_databases.py . [ 14%]
pelc\_unexpected_alleles.py . [ 17%]
pelc\batch_eplet_comp.py . [ 20%]
pelc\batch_eplet_comp_aux.py . [ 23%]
pelc\output_type.py . [ 26%]
pelc\simple_comparison.py . [ 29%]
tests\__init__.py . [ 32%]
tests\base_loading_for_tests.py . [ 35%]
tests\test_eplet_mismatches.py ....... [ 55%]
tests\test_extract_key_to_rank_epletes.py .. [ 61%]
tests\test_is_valid_allele.py .. [ 67%]
tests\test_pelc.py .. [ 73%]
tests\test_same_locus.py .. [ 79%]
tests\test_simple_comparison.py ..... [ 94%]
tests\test_unexpected_alleles.py .. [100%]
=================================== mypy =====================================
Success: no issues found in 18 source files
============================= 34 passed in 16.23s ============================
platform win32 -- Python 3.11.1, pytest-7.2.0, pluggy-1.0.0
plugins: anyio-3.6.2, mypy-0.10.3
collected 34 items
unit_tests_mypy.py .. [ 5%]
unit_tests_simple.py . [ 8%]
pelc\__init__.py . [ 11%]
pelc\_open_epregistry_databases.py . [ 14%]
pelc\_unexpected_alleles.py . [ 17%]
pelc\batch_eplet_comp.py . [ 20%]
pelc\batch_eplet_comp_aux.py . [ 23%]
pelc\output_type.py . [ 26%]
pelc\simple_comparison.py . [ 29%]
tests\__init__.py . [ 32%]
tests\base_loading_for_tests.py . [ 35%]
tests\test_eplet_mismatches.py ....... [ 55%]
tests\test_extract_key_to_rank_epletes.py .. [ 61%]
tests\test_is_valid_allele.py .. [ 67%]
tests\test_pelc.py .. [ 73%]
tests\test_same_locus.py .. [ 79%]
tests\test_simple_comparison.py ..... [ 94%]
tests\test_unexpected_alleles.py .. [100%]
=================================== mypy =====================================
Success: no issues found in 18 source files
============================= 34 passed in 14.95s ============================
About the source code
- Follows PEP8 Style Guidelines.
- All functions are unit-tested with pytest.
- All variables are correctly type-hinted, reviewed with static type checker
mypy
. - All functions are documented with docstrings.
Useful links:
Citation
If you use this software, please cite it as below.
- APA:
If you use this software, please cite it as below.
Lhotte, R., Clichet, V., Usureau, C. & Taupin, J. (2022).
Python Eplet Load Calculator (PELC) package (Version 0.5.1) [Computer software].
https://doi.org/10.5281/zenodo.7254809
- BibTeX:
@software{lhotte_romain_2022_7526198,
author = {Lhotte, Romain and
Clichet, Valentin and
Usureau, Cédric and
Taupin, Jean-Luc},
title = {Python Eplet Load Calculator},
month = oct,
year = 2022,
publisher = {Zenodo},
version = {0.5.1},
doi = {10.5281/zenodo.7526198},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pelc-0.5.1.tar.gz
.
File metadata
- Download URL: pelc-0.5.1.tar.gz
- Upload date:
- Size: 156.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.2 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49eac0f963ad5d53388567ab20b0df24f35d7e471265fb41b1b819b2539302ee |
|
MD5 | 02129712e3ede0779107f96f9946cee7 |
|
BLAKE2b-256 | d2c5199243de0b68c5c11ddfd518f846ddce7a4ee96e47f04694afbc86b11fe2 |
File details
Details for the file pelc-0.5.1-py3-none-any.whl
.
File metadata
- Download URL: pelc-0.5.1-py3-none-any.whl
- Upload date:
- Size: 167.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.2 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7eb0c0f17c3585a30f42cd84f532a9c601c0215dfab6d51e0ed6cabaf9116a4f |
|
MD5 | a0941dea3f0ebb21a7a2726346ab9b9f |
|
BLAKE2b-256 | e01fa94dfa891e55bcdea6ede155822163201be2f70bfb8dcc56c15a0eb9c4ab |