Skip to main content

Python Eplet Load Calculator

Project description

DOI Downloads

PELC (Python Eplet Load Calculator)

Overview

PELC is a Python package designed to calculate efficiently the HLA Eplet Load (based on the EpRegistry database) between donors and recipients by loading in a pandas.DataFrame in eplet_comparison.compute_epletic_load the recipients' and donors' typings. See minimal reproducible example for more details.

Getting started

Install from PyPI (recommended)

To use pelc, run pip install pelc in your terminal.

Usage

a. Comparing two alleles

Here is a minimal example of how to use pelc to compare two alleles:

from pelc.simple_comparison import simple_comparison

simple_comparison(
    "A*68:01",
    "A*68:02",
    "output",  # file will be saved as output.csv in the current directory
    verifiedonly=False,  # if True, only verified eplets will be considered, otherwise all eplets will be considered
    interlocus2=True  # doesn't matter for class I alleles
)

In the output.csv file created in the current directory, you will find two rows: "In A*68:02 but not in A*68:01" and "In A*68:01 but not in A*68:02".

b. Batch mode

Here is a minimal example with the file Template.xlsx (click to download):

import pandas as pd

from pelc import batch_eplet_comp, batch_eplet_comp_aux, output_type

if __name__ == "__main__":
    input_path: str = "Template.xlsx"

    output_path: str = "MyOutput"
    input_df: pd.DataFrame = pd.read_excel(
        input_path,
        sheet_name="My Sheet",
        index_col=0,
    )

    donordf: pd.DataFrame
    recipientdf: pd.DataFrame
    donordf, recipientdf = batch_eplet_comp_aux.split_dataframe(input_df)

    batch_eplet_comp.compute_epletic_load(
        donordf,
        recipientdf,
        output_path,
        output_type.OutputType.DETAILS_AND_COUNT,
        class_i=True,  # Compute class I eplets comparison?
        class_ii=True,  # Compute class II eplets comparison?
        verifiedonly=False,  # How should the epletic charge be computed? Verified eplets only? Or all eplets?
        exclude=None,  # list of indices to exclude
        interlocus2=True  # whether or not to take into account interlocus eplets for HLA of class II
    )

Note that if a typing is unknown, one can use A*, B*, ..., DPB1* as the allele name for both recipients and donors. If the allele is unknown for only of the two individuals, it is necessary to use A*, B*, ..., DPB1* for both individuals otherwise the eplet mismatch computation will not be performed for this donor / recipient pair.

Advanced usage:

a. Not taking into account all loci (if they are not typed for example)

If one wants to determine the eplet mismatches between a donor and a recipient but without taking into account a certain locus, one can use A*, B*, ..., DPB1* as the allele name for both recipients and donors on this locus and the eplet mismatch computation will only take into account the loci filled in.

b. Not creating a file but generating a pandas.DataFrame

If one wants to generate a pandas.DataFrame directly, the output_path argument of simple_comparison can be set to None. The pandas.DataFrame will be returned by the function. Same goes for compute_epletic_load.

Exit codes:

- 55: an eplet did not match the regular expression '^\d+' (ABC, DR, DQ or DP) and it also did not match the regular
expression '^.[pqr]*(\d+)' (interlocus2) either.

Unit tests

Tested on Python 3.10.2 & Python 3.11.1.

platform win32 -- Python 3.10.2, pytest-7.2.0, pluggy-1.0.0
plugins: anyio-3.6.2, mypy-0.10.3
collected 39 items

unit_tests_mypy.py ..                                                    [  5%]
unit_tests_simple.py .                                                   [  7%]
pelc\__init__.py .                                                       [ 10%]
pelc\_input_sanity_check.py .                                            [ 12%]
pelc\_open_epregistry_databases.py .                                     [ 15%]
pelc\_unexpected_alleles.py .                                            [ 17%]
pelc\batch_eplet_comp.py .                                               [ 20%]
pelc\batch_eplet_comp_aux.py .                                           [ 23%]
pelc\output_type.py .                                                    [ 25%]
pelc\simple_comparison.py .                                              [ 28%]
tests\__init__.py .                                                      [ 30%]
tests\base_loading_for_tests.py .                                        [ 33%]
tests\test_eplet_mismatches.py .........                                 [ 56%]
tests\test_extract_key_to_rank_epletes.py ..                             [ 61%]
tests\test_is_valid_allele.py ..                                         [ 66%]
tests\test_only_one_chromosome.py ..                                     [ 71%]
tests\test_pelc.py ..                                                    [ 76%]
tests\test_same_locus.py ..                                              [ 82%]
tests\test_simple_comparison.py .....                                    [ 94%]
tests\test_unexpected_alleles.py ..                                      [100%]
==================================== mypy =====================================

Success: no issues found in 20 source files
============================= 39 passed in 32.56s =============================
platform win32 -- Python 3.11.1, pytest-7.2.0, pluggy-1.0.0
plugins: anyio-3.6.2, mypy-0.10.3
collected 39 items

unit_tests_mypy.py ..                                                    [  5%]
unit_tests_simple.py .                                                   [  7%]
pelc\__init__.py .                                                       [ 10%]
pelc\_input_sanity_check.py .                                            [ 12%]
pelc\_open_epregistry_databases.py .                                     [ 15%]
pelc\_unexpected_alleles.py .                                            [ 17%]
pelc\batch_eplet_comp.py .                                               [ 20%]
pelc\batch_eplet_comp_aux.py .                                           [ 23%]
pelc\output_type.py .                                                    [ 25%]
pelc\simple_comparison.py .                                              [ 28%]
tests\__init__.py .                                                      [ 30%]
tests\base_loading_for_tests.py .                                        [ 33%]
tests\test_eplet_mismatches.py .........                                 [ 56%]
tests\test_extract_key_to_rank_epletes.py ..                             [ 61%]
tests\test_is_valid_allele.py ..                                         [ 66%]
tests\test_only_one_chromosome.py ..                                     [ 71%]
tests\test_pelc.py ..                                                    [ 76%]
tests\test_same_locus.py ..                                              [ 82%]
tests\test_simple_comparison.py .....                                    [ 94%]
tests\test_unexpected_alleles.py ..                                      [100%]
==================================== mypy =====================================

Success: no issues found in 20 source files
============================= 39 passed in 32.56s =============================

About the source code

  • Follows PEP8 Style Guidelines.
  • All functions are unit-tested with pytest.
  • All variables are correctly type-hinted, reviewed with static type checker mypy.
  • All functions are documented with docstrings.

Useful links:

Citation

If you use this software, please cite it as below.

  • APA:
If you use this software, please cite it as below. 

Lhotte, R., Clichet, V., Usureau, C. & Taupin, J. (2022). 
Python Eplet Load Calculator (PELC) package (Version 0.5.2) [Computer software].
https://doi.org/10.5281/zenodo.7254809
  • BibTeX:
@software{lhotte_romain_2022_7526198,
  author       = {Lhotte, Romain and
                  Clichet, Valentin and
                  Usureau, Cédric and
                  Taupin, Jean-Luc},
  title        = {Python Eplet Load Calculator},
  month        = oct,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.5.2},
  doi          = {10.5281/zenodo.7526198},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pelc-0.5.2.tar.gz (156.5 kB view details)

Uploaded Source

Built Distribution

pelc-0.5.2-py3-none-any.whl (167.1 kB view details)

Uploaded Python 3

File details

Details for the file pelc-0.5.2.tar.gz.

File metadata

  • Download URL: pelc-0.5.2.tar.gz
  • Upload date:
  • Size: 156.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Windows/10

File hashes

Hashes for pelc-0.5.2.tar.gz
Algorithm Hash digest
SHA256 d09dc689a61d302b1a7d72bc3cc1e31eadc37576f58727400c04c3bc3e8ace97
MD5 51f11591f4416d9f675d53dec5c1038e
BLAKE2b-256 204e4dc70818906c5f4ea4770d4dfca2802e9130bf5e5093e11542c8d22093be

See more details on using hashes here.

File details

Details for the file pelc-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: pelc-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 167.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Windows/10

File hashes

Hashes for pelc-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 881b69ed3931c8d63bde23792e118b96ac28bbca9ffb63765bf89bb8996ae713
MD5 b1595ed60eaa387396cea579eb53bc3e
BLAKE2b-256 f2fe520dc3dc09156cf155c25b6b5a58cc67f61b9597475657beb3f1780740da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page