Skip to main content

PennyLane-Lightning plugin

Project description

Linux x86_64 tests (branch) Windows tests (branch) Linux x86_64 wheel builds (branch) Codecov coverage CodeFactor Grade Read the Docs PyPI PyPI - Python Version

The Lightning plugin ecosystem provides fast state-vector and tensor network simulators written in C++.

PennyLane is a cross-platform Python library for quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations. PennyLane supports Python 3.10 and above.

Features

PennyLane-Lightning high performance simulators include the following backends:

  • lightning.qubit: is a fast state-vector simulator written in C++.

  • lightning.gpu: is a state-vector simulator based on the NVIDIA cuQuantum SDK. It notably implements a distributed state-vector simulator based on MPI.

  • lightning.kokkos: is a state-vector simulator written with Kokkos. It can exploit the inherent parallelism of modern processing units supporting the OpenMP, CUDA or HIP programming models.

  • lightning.tensor: is a tensor network simulator based on the NVIDIA cuQuantum SDK (requires NVIDIA GPUs with SM 7.0 or greater). The supported method is Matrix Product State (MPS).

The following table summarizes the supported platforms and the primary installation mode:

L-Qubit

L-GPU

L-GPU (MPI)

L-Kokkos (OMP)

L-Kokkos (CUDA)

L-Kokkos (HIP)

L-Tensor

Linux x86

pip

pip

source

pip

source

source

pip

Linux ARM

pip

pip

pip

source

source

pip

Linux PPC

pip

source

source

source

source

MacOS x86

pip

pip

MacOS ARM

pip

pip

Windows

pip

Lightning-Qubit installation

Lightning-Qubit comes pre-installed with PennyLane. Please follow our installation instructions to install PennyLane.

Install from source

To build Lightning plugins from source you can run

PL_BACKEND=${PL_BACKEND} pip install pybind11 pennylane-lightning --no-binary :all:

where ${PL_BACKEND} can be lightning_qubit (default), lightning_gpu, lightning_kokkos, or lightning_tensor. The pybind11 library is required to bind the C++ functionality to Python.

A C++ compiler such as g++, clang++, or MSVC is required. On Debian-based systems, this can be installed via apt:

sudo apt -y update && sudo apt install -y g++ libomp-dev

where libomp-dev is included to also install OpenMP. On MacOS, we recommend using the latest version of clang++ and libomp:

brew install llvm libomp

The Lightning-GPU backend has several dependencies (e.g. CUDA, custatevec-cu12, etc.), and hence we recommend referring to Lightning-GPU installation section. Similarly, for Lightning-Kokkos it is recommended to configure and install Kokkos independently as prescribed in the Lightning-Kokkos installation section.

Development installation

For development and testing, you can install by cloning the repository:

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
PL_BACKEND=${PL_BACKEND} python scripts/configure_pyproject_toml.py
pip install -e . --config-settings editable_mode=compat -vv

Note that subsequent calls to pip install -e . will use cached binaries stored in the build folder, and the pyproject.toml file defined by the configuration script. Run make clean if you would like to recompile from scratch.

You can also pass cmake options with CMAKE_ARGS as follows:

CMAKE_ARGS="-DENABLE_OPENMP=OFF -DENABLE_BLAS=OFF" pip install -e . --config-settings editable_mode=compat -vv

Supported options are -DENABLE_WARNINGS, -DENABLE_NATIVE (for -march=native) -DENABLE_BLAS, -DENABLE_OPENMP, and -DENABLE_CLANG_TIDY.

Compile MSVC (Windows)

Lightning-Qubit can be compiled on Windows using the Microsoft Visual C++ compiler. You need cmake and appropriate Python environment (e.g. using Anaconda).

We recommend using [x64 (or x86)] Native Tools Command Prompt for VS [version] to compile the library. Be sure that cmake and python can be called within the prompt.

cmake --version
python --version

Then a common command will work.

pip install -r requirements.txt
pip install -e .

Note that OpenMP and BLAS are disabled on this platform.

Testing

To test that a plugin is working correctly, one can check both Python and C++ unit tests for each device.

Python Test

Test the Python code with:

make test-python device=${PL.DEVICE}

where ${PL.DEVICE} differ from ${PL_BACKEND} by replacing the underscore by a dot. And can be

  • lightning.qubit (default)

  • lightning.gpu

  • lightning.kokkos

  • lightning.tensor

C++ Test

The C++ code can be tested with

PL_BACKEND=${PL_BACKEND} make test-cpp

Lightning-GPU installation

For the majority of cases, Lightning-GPU can be installed by following our installation instructions at pennylane.ai/install.

Install Lightning-GPU from source

To install Lightning-GPU from the package sources using the direct SDK path, Lightning-Qubit should be install before Lightning-GPU (compilation is not necessary):

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
pip install custatevec-cu12
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat -vv

Then a CUQUANTUM_SDK environment variable can be set:

export CUQUANTUM_SDK=$(python -c "import site; print( f'{site.getsitepackages()[0]}/cuquantum')")

The Lightning-GPU can then be installed with pip:

PL_BACKEND="lightning_gpu" python scripts/configure_pyproject_toml.py
python -m pip install -e . --config-settings editable_mode=compat -vv

To simplify the build, we recommend using the containerized build process described in Docker support section.

Install Lightning-GPU with MPI

Building Lightning-GPU with MPI also requires the NVIDIA cuQuantum SDK (currently supported version: custatevec-cu12), mpi4py and CUDA-aware MPI (Message Passing Interface). CUDA-aware MPI allows data exchange between GPU memory spaces of different nodes without the need for CPU-mediated transfers. Both the MPICH and OpenMPI libraries are supported, provided they are compiled with CUDA support. The path to libmpi.so should be found in LD_LIBRARY_PATH. It is recommended to install the NVIDIA cuQuantum SDK and mpi4py Python package within pip or conda inside a virtual environment. Please consult the cuQuantum SDK , mpi4py, MPICH, or OpenMPI install guide for more information.

Before installing Lightning-GPU with MPI support using the direct SDK path, please ensure Lightning-Qubit, CUDA-aware MPI and custatevec are installed and the environment variable CUQUANTUM_SDK is set properly. Then Lightning-GPU with MPI support can then be installed in the editable mode:

PL_BACKEND="lightning_gpu" python scripts/configure_pyproject_toml.py
CMAKE_ARGS="-DENABLE_MPI=ON" python -m pip install -e . --config-settings editable_mode=compat -vv

Test Lightning-GPU with MPI

You may test the Python layer of the MPI enabled plugin as follows:

mpirun -np 2 python -m pytest mpitests --tb=short

The C++ code is tested with

rm -rf ./BuildTests
cmake . -BBuildTests -DBUILD_TESTS=1 -DBUILD_TESTS=1 -DENABLE_MPI=ON -DCUQUANTUM_SDK=<path to sdk>
cmake --build ./BuildTests --verbose
cd ./BuildTests
for file in *runner_mpi ; do mpirun -np 2 ./BuildTests/$file ; done;

Lightning-Kokkos installation

On most Linux systems, Lightning-Kokkos can be installed via Spack or Docker by following our installation instructions at pennylane.ai/install.

Install Lightning-Kokkos from source

As Kokkos enables support for many different HPC-targeted hardware platforms, lightning.kokkos can be built to support any of these platforms when building from source.

Install Kokkos (Optional)

We suggest first installing Kokkos with the wanted configuration following the instructions found in the Kokkos documentation. For example, the following will build Kokkos for NVIDIA A100 cards

Download the Kokkos code. Lightning Kokkos was tested with Kokkos version <= 4.3.01

# Replace x, y, and z by the correct version
wget https://github.com/kokkos/kokkos/archive/refs/tags/4.x.yz.tar.gz
tar -xvf 4.x.y.z.tar.gz
cd kokkos-4.x.y.z

Build Kokkos for NVIDIA A100 cards (SM80 architecture)

cmake -S . -B build -G Ninja \
    -DCMAKE_BUILD_TYPE=RelWithDebugInfo \
    -DCMAKE_INSTALL_PREFIX=/opt/kokkos/4.x.y.z/AMPERE80 \
    -DCMAKE_CXX_STANDARD=20 \
    -DBUILD_SHARED_LIBS:BOOL=ON \
    -DBUILD_TESTING:BOOL=OFF \
    -DKokkos_ENABLE_SERIAL:BOOL=ON \
    -DKokkos_ENABLE_CUDA:BOOL=ON \
    -DKokkos_ARCH_AMPERE80:BOOL=ON \
    -DKokkos_ENABLE_EXAMPLES:BOOL=OFF \
    -DKokkos_ENABLE_TESTS:BOOL=OFF \
    -DKokkos_ENABLE_LIBDL:BOOL=OFF
cmake --build build && cmake --install build
export CMAKE_PREFIX_PATH=/opt/kokkos/4.x.y.z/AMPERE80:$CMAKE_PREFIX_PATH

Next, append the install location to CMAKE_PREFIX_PATH. Note that the C++20 standard is required (-DCMAKE_CXX_STANDARD=20 option), and hence CUDA v12 is required for the CUDA backend.

Install Lightning-Kokkos

If an installation of Kokkos is not found, then our builder will clone and install it during the build process. Lightning-Qubit should be installed (compilation is not necessary):

The simplest way to install Lightning-Kokkos (OpenMP backend) through pip.

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat
PL_BACKEND="lightning_kokkos" python scripts/configure_pyproject_toml.py
CMAKE_ARGS="-DKokkos_ENABLE_OPENMP=ON" python -m pip install -e . --config-settings editable_mode=compat -vv

The supported backend options are

SERIAL

OPENMP

THREADS

HIP

CUDA

and the corresponding build options are -DKokkos_ENABLE_XXX=ON, where XXX needs be replaced by the backend name, for instance OPENMP.

One can activate simultaneously one serial, one parallel CPU host (e.g. OPENMP, THREADS) and one parallel GPU device backend (e.g. HIP, CUDA), but not two of any category at the same time. For HIP and CUDA, the appropriate software stacks are required to enable compilation and subsequent use. Similarly, the CMake option -DKokkos_ARCH_{...}=ON must also be specified to target a given architecture. A list of the architectures is found on the Kokkos wiki. Note that THREADS backend is not recommended since Kokkos does not guarantee its safety.

Lightning-Tensor installation

Lightning-Tensor requires CUDA 12 and the cuQuantum SDK (only the cutensornet library is required). The SDK may be installed within the Python environment site-packages directory using pip or conda or the SDK library path appended to the LD_LIBRARY_PATH environment variable. Please see the cuQuantum SDK install guide for more information.

Lightning-Tensor and cutensornet-cu12 can be installed via:

pip install cutensornet-cu12
pip install pennylane-lightning-tensor

Install Lightning-Tensor from source

Lightning-Qubit should be installed before Lightning-Tensor (compilation is not necessary):

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
pip install -r requirements.txt
pip install cutensornet-cu12
PL_BACKEND="lightning_qubit" python scripts/configure_pyproject_toml.py
SKIP_COMPILATION=True pip install -e . --config-settings editable_mode=compat

Then a CUQUANTUM_SDK environment variable can be set:

export CUQUANTUM_SDK=$(python -c "import site; print( f'{site.getsitepackages()[0]}/cuquantum')")

The Lightning-Tensor can then be installed with pip:

PL_BACKEND="lightning_tensor" python scripts/configure_pyproject_toml.py
pip install -e . --config-settings editable_mode=compat -vv

Please refer to the plugin documentation as well as to the PennyLane documentation for further reference.

Docker support

Docker images for the various backends are found on the PennyLane Docker Hub page, where there is also a detailed description about PennyLane Docker support. Briefly, one can build the Docker Lightning images using:

git clone https://github.com/PennyLaneAI/pennylane-lightning.git
cd pennylane-lightning
docker build -f docker/Dockerfile --target ${TARGET} .

where ${TARGET} is one of the following

  • wheel-lightning-qubit

  • wheel-lightning-gpu

  • wheel-lightning-kokkos-openmp

  • wheel-lightning-kokkos-cuda

  • wheel-lightning-kokkos-rocm

Contributing

We welcome contributions - simply fork the repository of this plugin, and then make a pull request containing your contribution. All contributors to this plugin will be listed as authors on the releases.

We also encourage bug reports, suggestions for new features and enhancements, and even links to cool projects or applications built on PennyLane.

Black & Pylint

If you contribute to the Python code, please mind the following. The Python code is formatted with the PEP 8 compliant opinionated formatter Black (black==23.7.0). We set a line width of a 100 characters. The Python code is statically analyzed with Pylint. We set up a pre-commit hook (see Git hooks) to run both of these on git commit. Please make your best effort to comply with black and pylint before using disabling pragmas (e.g. # pylint: disable=missing-function-docstring).

Authors

Lightning is the work of many contributors.

If you are using Lightning for research, please cite:

@misc{
    asadi2024,
    title={{Hybrid quantum programming with PennyLane Lightning on HPC platforms}},
    author={Ali Asadi and Amintor Dusko and Chae-Yeun Park and Vincent Michaud-Rioux and Isidor Schoch and Shuli Shu and Trevor Vincent and Lee James O'Riordan},
    year={2024},
    eprint={2403.02512},
    archivePrefix={arXiv},
    primaryClass={quant-ph},
    url={https://arxiv.org/abs/2403.02512},
}

Support

If you are having issues, please let us know by posting the issue on our Github issue tracker, or by asking a question in the forum.

License

The Lightning plugins are free and open source, released under the Apache License, Version 2.0. The Lightning-GPU and Lightning-Tensor plugins make use of the NVIDIA cuQuantum SDK headers to enable the device bindings to PennyLane, which are held to their own respective license.

Acknowledgements

PennyLane Lightning makes use of the following libraries and tools, which are under their own respective licenses:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PennyLane_Lightning_Kokkos-0.39.0.tar.gz (632.4 kB view details)

Uploaded Source

Built Distributions

PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_arm64.whl (923.8 kB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_arm64.whl (923.3 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_arm64.whl (922.4 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0.tar.gz.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0.tar.gz
Algorithm Hash digest
SHA256 aeb2f961cd18850fe4b73ae6545a2d029a3f9103875422546723936da8039b55
MD5 46ad250d3eabec689d3d7a49dc781906
BLAKE2b-256 0de74afaf7082b6b2dfc255c663742dd19a6815f9dea71d252f67616222f47b6

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e8ff4f6adcced98d1e5b9d2e2087009f1984c6b7e64a951139947260f7cc87bd
MD5 2fb5dff1ffb2a56cb6678c7439d98383
BLAKE2b-256 4e1c05c35cc5d796248b2a9a09b4b832207bf3a992543e021eb36d0ccab09b08

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7478c95d5b405a8f61bd042c8785a95e757591eacd99722c2c4d410d3e5a37d5
MD5 a9981f515c07194dd768470ac908e5aa
BLAKE2b-256 8859e257f6ca93a70ebb9803ba6319c9267886d9b1e7e1f8d511bb25ba907b7d

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 b56ea8b5c39db6ec32555d9e9e80c8cfe6de463d500b0fbb4be543e0a6a2fe79
MD5 3897c265c3d62a3a44997af6ebc74997
BLAKE2b-256 c6478d1b0390e0c23e243f8f1fd2ef53941669e299a56808bde8cd072caca616

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 103c90e112b7072f8e766337360e1d238ab39378fa951956d926a10770620e7e
MD5 604b734ce942b3feb98086778805fb72
BLAKE2b-256 f2d91ee4b88ff3a9f53dc087214d6903131902556e3e76237a4250da43146f30

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c9928b05b32c45111aba603b643d82b28232dd903ac196e8a3c8e1259f5582cb
MD5 43c7b2f8ed59014025158ed2b29d33fa
BLAKE2b-256 01bf703d8a218db92b7969d1654420015b32d265908712fcc66cb3e41f2a6c5e

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d397f3719857f307a1b6998756dcd7a1a1147f99f80f1b1682222e4a9f029e7a
MD5 03e2b0191ac8be5b1eb8e6be5d7a9d90
BLAKE2b-256 e948b2fb73c45c831830cf73f8accdf89b50e5ecf1963b6092f6be3e16876525

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c4e12fb7f7d87626182a42691d0445a1a27aa3afa1a8761523a184d08a98bb60
MD5 df9d48aea6ac4202bc5a92f4b45fc24b
BLAKE2b-256 1b0a376b718b5329e6c5e4ac4b29feef3a463bf415c218c71f4e46f1225ba8b3

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 413576ebbc89db40c6b28a93a530799d47842b7e59bcb474a4fdd15f4fe04e7c
MD5 2d577a03bbc20667b5f570509e4c7be8
BLAKE2b-256 ab6296eb0c8db0be96a0c293e019191d9e38cded6a9999c0f588f1d5265f40ce

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cec0e142500f34b413c11bd62fc1b3ca399d0671a6445982489539033980e6ba
MD5 0d45927464aabcd42c824e9b139f61fd
BLAKE2b-256 dc0c180174697c58ea24966ddb175bc5e6244957d1471e6af3077ffbd58850a1

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 03c66f41d0b58125ad57e19f8099ea841a3fafff1f31284e7cd27280c62c8c7b
MD5 92bd47e5756b93300762510630b15056
BLAKE2b-256 285fd47e9fd09eb8eb0fa362dc8bfc5c8605a44b8ae8158b2a2e6c49e8649c16

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 6884dc4f73cdb7c7e392f41ea8702b426bc1fc4d4d421615e03c4fea08c30732
MD5 495fe050c27c434268d12712cb22036f
BLAKE2b-256 698ed4160b102b9ceea498c97a47e7753a4dca32af80706374d16f8fb1653bb2

See more details on using hashes here.

File details

Details for the file PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for PennyLane_Lightning_Kokkos-0.39.0-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 2e90a8948ebf1e10e73dfe8448db875f7d0d60201bdfa632b30f46864d9a3015
MD5 3345156b6bb4d2d35d2e67ea84892f07
BLAKE2b-256 78aa215cfcd0f156b7ad57beb888d6736e0a4e593f72396cbda069908b06dc7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page