Skip to main content

Penzai: A JAX research toolkit for building, editing, and visualizing neural networks.

Project description

Penzai

盆 ("pen", tray) 栽 ("zai", planting) - an ancient Chinese art of forming trees and landscapes in miniature, also called penjing and an ancestor of the Japanese art of bonsai.

Penzai is a JAX library for writing models as legible, functional pytree data structures, along with tools for visualizing, modifying, and analyzing them. Penzai focuses on making it easy to do stuff with models after they have been trained, making it a great choice for research involving reverse-engineering or ablating model components, inspecting and probing internal activations, performing model surgery, debugging architectures, and more. (But if you just want to build and train a model, you can do that too!)

Penzai is structured as a collection of modular tools, designed together but each useable independently:

  • penzai.nn (pz.nn): A declarative combinator-based neural network library and an alternative to other neural network libraries like Flax, Haiku, Keras, or Equinox, which exposes the full structure of your model's forward pass in the model pytree. This means you can see everything your model does by pretty printing it, and inject new runtime logic with jax.tree_util. Like Equinox, there's no magic: models are just callable pytrees under the hood.

  • penzai.treescope (pz.ts): A superpowered interactive Python pretty-printer, which works as a drop-in replacement for the ordinary IPython/Colab renderer. It's designed to help understand Penzai models and other deeply-nested JAX pytrees, with built-in support for visualizing arbitrary-dimensional NDArrays.

  • penzai.core.selectors (pz.select): A pytree swiss-army-knife, generalizing JAX's .at[...].set(...) syntax to arbitrary type-driven pytree traversals, and making it easy to do complex rewrites or on-the-fly patching of Penzai models and other data structures.

  • penzai.core.named_axes (pz.nx): A lightweight named axis system which lifts ordinary JAX functions to vectorize over named axes, and allows you to seamlessly switch between named and positional programming styles without having to learn a new array API.

  • penzai.data_effects (pz.de): An opt-in system for side arguments, random numbers, and state variables that is built on pytree traversal and puts you in control, without getting in the way of writing or using your model.

Documentation on Penzai can be found at https://penzai.readthedocs.io.

Getting Started

If you haven't already installed JAX, you should do that first, since the installation process depends on your platform. You can find instructions in the JAX documentation. Afterward, you can install Penzai using

pip install penzai

and import it using

import penzai
from penzai import pz

(penzai.pz is an alias namespace, which makes it easier to reference common Penzai objects.)

When working in an Colab or IPython notebook, we recommend also configuring Penzai as the default pretty printer, and enabling some utilities for interactive use:

pz.ts.register_as_default()
pz.ts.register_autovisualize_magic()
pz.enable_interactive_context()

# Optional: enables automatic array visualization
pz.ts.active_autovisualizer.set_interactive(pz.ts.ArrayAutovisualizer())

Here's how you could initialize and visualize a simple neural network:

from penzai.example_models import simple_mlp
mlp = pz.nn.initialize_parameters(
    simple_mlp.MLP.from_config([8, 32, 32, 8]),
    jax.random.key(42),
)

# Models and arrays are visualized automatically when you output them from a
# Colab/IPython notebook cell:
mlp

Here's how you could capture and extract the activations after the elementwise nonlinearities:

mlp_with_captured_activations = pz.de.CollectingSideOutputs.handling(
    pz.select(mlp)
    .at_instances_of(pz.nn.Elementwise)
    .insert_after(pz.de.TellIntermediate())
)

output, intermediates = mlp_with_captured_activations(
  pz.nx.ones({"features": 8})
)

To learn more about how to build and manipulate neural networks with Penzai, we recommend starting with the "How to Think in Penzai" tutorial, or one of the other tutorials in the Penzai documentation.


This is not an officially supported Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

penzai-0.1.0.tar.gz (516.4 kB view details)

Uploaded Source

Built Distribution

penzai-0.1.0-py3-none-any.whl (329.8 kB view details)

Uploaded Python 3

File details

Details for the file penzai-0.1.0.tar.gz.

File metadata

  • Download URL: penzai-0.1.0.tar.gz
  • Upload date:
  • Size: 516.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for penzai-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fe7dc5d0df728ee1bd8841513ea5036c8c6043fb857707c091d9ce1e49023a9e
MD5 0dff322de903dd638857899d7efd0e83
BLAKE2b-256 a06f754a44cc3138285e92934c3470fbc6c44f6a9e4b9c83999dd0d37cbdb0b8

See more details on using hashes here.

File details

Details for the file penzai-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: penzai-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 329.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for penzai-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bd8e4c4be20a160dd8ebd505a8532c7cd435bd47039de9709058700e07d4f683
MD5 bbdc76700b47d40614ac5371b4d7071d
BLAKE2b-256 b015d2f1bdd5161e06e9b72c96815d4dba5092b39e931e83f4b532d687f57703

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page