Skip to main content

Official Python client for the People Data Labs API

Project description

People Data Labs Logo

People Data Labs Python Client

Official Python client for the People Data Labs API.

Repo Status   People Data Labs on PyPI   People Data Labs on PyPI   Tests Status

Table of Contents

🔧 Installation

  1. Install from PyPi using pip, a package manager for Python.

    pip install peopledatalabs
    
  2. Sign up for a free PDL API key.

🚀 Usage

First, create the PDLPY client:

from peopledatalabs import PDLPY


# specify your API key
client = PDLPY(
    api_key="YOUR API KEY",
)

Then, send requests to any PDL API Endpoint.

Getting Person Data

By Enrichment

result = client.person.enrichment(
    phone="4155688415",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code};"
        f"\nReason: {result.reason};"
        f"\nMessage: {result.json()['error']['message']};"
    )

By Bulk Enrichment

result = client.person.bulk(
    required="emails AND profiles",
    requests=[
        {
            "metadata": {
                "user_id": "123"
            },
            "params": {
                "profile": ["linkedin.com/in/seanthorne"],
                "location": ["SF Bay Area"],
                "name": ["Sean F. Thorne"],
            }
        },
        {
            "metadata": {
                "user_id": "345"
            },
            "params": {
                "profile": ["https://www.linkedin.com/in/haydenconrad/"],
                "first_name": "Hayden",
                "last_name": "Conrad",
            }
        }
    ]
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (Elasticsearch)

es_query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"location_country": "mexico"}},
                {"term": {"job_title_role": "health"}},
            ]
        }
    }
}
data = {
    "query": es_query,
    "size": 10,
    "pretty": True,
    "dataset": "phone, mobile_phone",
}
result = client.person.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (SQL)

sql_query = (
    "SELECT * FROM person"
    " WHERE location_country='mexico'"
    " AND job_title_role='health'"
    " AND phone_numbers IS NOT NULL;"
)
data = {
    "sql": sql_query,
    "size": 10,
    "pretty": True,
    "dataset": "phone, mobile_phone",
}
result = client.person.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By PDL_ID (Retrieve API)

result = client.person.retrieve(
    person_id="qEnOZ5Oh0poWnQ1luFBfVw_0000",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Fuzzy Enrichment (Identify API)

result = client.person.enrichment(
    name="sean thorne",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Getting Company Data

By Enrichment

result = client.company.enrichment(
    website="peopledatalabs.com",
    pretty=True,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Bulk Enrichment

result = client.company.bulk(
    requests=[
        {
            "metadata": {
                "company_id": "123"
            },
            "params": {
                "profile": "linkedin.com/company/peopledatalabs",
            }
        },
        {
            "metadata": {
                "company_id": "345"
            },
            "params": {
                "profile": "https://www.linkedin.com/company/apple/",
            }
        }
    ]
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (Elasticsearch)

es_query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"tags": "big data"}},
                {"term": {"industry": "financial services"}},
                {"term": {"location.country": "united states"}},
            ]
        }
    }
}
data = {
    "query": es_query,
    "size": 10,
    "pretty": True,
}
result = client.company.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

By Search (SQL)

sql_query = (
    "SELECT * FROM company"
    " WHERE tags='big data'"
    " AND industry='financial services'"
    " AND location.country='united states';"
)
data = {
    "sql": sql_query,
    "size": 10,
    "pretty": True,
}
result = client.company.search(**data)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Using supporting APIs

Get Autocomplete Suggestions

result = client.autocomplete(
    field="title",
    text="full",
    size=10,
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw Company Strings

result = client.company.cleaner(
    name="peOple DaTa LabS",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw Location Strings

result = client.location.cleaner(
    location="455 Market Street, San Francisco, California 94105, US",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Clean Raw School Strings

result = client.school.cleaner(
    name="university of oregon",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Get Job Title Enrichment

result = client.job_title(
    job_title="data scientist",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Get Skill Enrichment

result = client.skill(
    skill="c++",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code}"
        f"\nReason: {result.reason}"
        f"\nMessage: {result.json()['error']['message']}"
    )

Get IP Enrichment

result = client.ip(
    ip="72.212.42.169",
)
if result.ok:
    print(result.text)
else:
    print(
        f"Status: {result.status_code};"
        f"\nReason: {result.reason};"
        f"\nMessage: {result.json()['error']['message']};"
    )

🏝 Sandbox Usage

To enable sandbox usage, use the sandbox flag on PDLPY

PDLPY(sandbox=True)

🌐 Endpoints

Person Endpoints

API Endpoint PDLPY Function
Person Enrichment API PDLPY.person.enrichment(**params)
Person Bulk Enrichment API PDLPY.person.bulk(**params)
Person Search API PDLPY.person.search(**params)
Person Retrieve API PDLPY.person.retrieve(**params)
Person Identify API PDLPY.person.identify(**params)

Company Endpoints

API Endpoint PDLPY Function
Company Enrichment API PDLPY.company.enrichment(**params)
Company Bulk Enrichment API PDLPY.company.bulk(**params)
Company Search API PDLPY.company.search(**params)

Supporting Endpoints

API Endpoint PDLJS Function
Autocomplete API PDLPY.autocomplete(**params)
Company Cleaner API PDLPY.company.cleaner(**params)
Location Cleaner API PDLPY.location.cleaner(**params)
School Cleaner API PDLPY.school.cleaner(**params)
Job Title Enrichment API PDLPY.job_title(**params)
Skill Enrichment API PDLPY.skill(**params)
IP Enrichment API PDLPY.ip(**params)

📘 Documentation

All of our API endpoints are documented at: https://docs.peopledatalabs.com/

These docs describe the supported input parameters, output responses and also provide additional technical context.

As illustrated in the Endpoints section above, each of our API endpoints is mapped to a specific method in the PDLPY class. For each of these class methods, all function inputs are mapped as input parameters to the respective API endpoint, meaning that you can use the API documentation linked above to determine the input parameters for each endpoint.

As an example:

The following is valid because name is a supported input parameter to the Person Identify API:

PDLPY().person.identify({"name": "sean thorne"})

Conversely, this would be invalid because fake_parameter is not an input parameter to the Person Identify API:

PDLPY().person.identify({"fake_parameter": "anything"})

Upgrading to v2.X.X

NOTE: When upgrading to v2.X.X from vX.X.X and below, the minimum required python version is now 3.8.

Upgrading to v3.X.X

NOTE: When upgrading to v3.X.X from vX.X.X and below, the minimum required pydantic version is now 2.

Upgrading to v4.X.X

NOTE: When upgrading to v4.X.X from vX.X.X and below, we no longer auto load the API key from the environment variable PDL_API_KEY. You must now pass the API key as a parameter to the PDLPY class.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

peopledatalabs-4.1.2.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

peopledatalabs-4.1.2-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file peopledatalabs-4.1.2.tar.gz.

File metadata

  • Download URL: peopledatalabs-4.1.2.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.8.18 Linux/6.5.0-1025-azure

File hashes

Hashes for peopledatalabs-4.1.2.tar.gz
Algorithm Hash digest
SHA256 30f3a978e80b86a14e52c6536dd1be35b60191324161fc64cf146e5d606101e6
MD5 9bd70023dcd897c3c3a46ce3d1ac1e80
BLAKE2b-256 a423318ba9d94b957e6ab7d611814c3190a72a165cc122d1b404a3e56e9f4b75

See more details on using hashes here.

File details

Details for the file peopledatalabs-4.1.2-py3-none-any.whl.

File metadata

  • Download URL: peopledatalabs-4.1.2-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.8.18 Linux/6.5.0-1025-azure

File hashes

Hashes for peopledatalabs-4.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d09031193e195df0e67687e36e17bb482847c475424757e5e6032be7c2fe5a35
MD5 af0ac5782467e4f3b75ce18a382ac9db
BLAKE2b-256 ed187bb722763a0ee0c5ae6aeebed5e4172398ec70f2ad85d72550e3d827f4f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page