Skip to main content

Awesome pepboost created by pgarrett-scripps

Project description

pepboost

codecov CI

Awesome pepboost created by pgarrett-scripps

Install it from PyPI

pip install pepboost

Results

The results are not great when compared to deep learning approaches, but they are several times faster. There is a lot of room for improvement. No alignment is performed, and the models are not optimized.

Training RT model...
Found 0 inf sequences.
Found 0 nan sequences.
R^2: 0.9139231539453871
          Retention Time: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                  ▖          ▗    ▄ ▗▄▄▄▄▟▄▄▄▟█▄▙▟▙██▟▄█▟▖▘▝│ 
│                           ▄ ▄▗▘▌▐▛█▐▜████████████████▜▛▌ ▝▗│ 
│                   ▖   ▗  ▟ ▖▛ ▗▜▐███████████████████▛▝▀    │ 
│                  ▝  ▖▌ ▌ ▟▖▝▀▖▟██████████████████▛▛▀▄▖     │ 
│        ▗         ▘     ▘▖▗▖████████████████████▀▛▘▀▘ ▘     │ 
│             ▘▝ ▝ ▝ ▄ ▞▜▐▄▐▙███████████████████▀▌  ▌     ▘  │ 
│           ▖   ▖▖▚▄▗▀▞▘████████████████████▛▌ ▛▀ ▄▘         │ 
│        ▝▖ ▘▗▘▄ ▖▐▞▀▟▙██████████████████▘█▌ ▀   ▘           │ 
│        ▝   ▝▖▌▘▚██▙██████████████████▜▟▘  ▖▌               │ 0.5
│       ▗ ▗ ▌▐▟▚▜▜████████████████▀▀▌▚▘▘ ▖ ▖ ▗▝              │ 
│▘  ▖     ▐▖▗▘▟████████████████▜▘▐▐   ▀▖              ▝      │ 
│     ▖▝▗▖ ▜█████████████▛▛▀▚▘▛  ▘▝▘▝              ▖         │ 
│   ▝▖ ▝▐▙███████████▀▜▀▌▘▘▝   ▘    ▘     ▘                  │ 
│    ▗▟██████████▜▀▘▘      ▖                                 │ 
│▘▝▝██████▛▀▀▘   ▘     ▝                                     │ 
│ ▄██████▘     ▘  ▗                                          │ 
│▁▚████▛▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▖▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
└────────────────────────────────────────────────────────────┘
          0.2         0.4        0.6         0.8        1.0
Reading Files: 100%|██████████| 29/29 [00:08<00:00,  3.62it/s]
Training IM model...
R^2: 0.965236664924016
           Ion Mobility: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                       ▖    ▝▝      ▖▗▝▖ ▖ ▗ ▟▄▗██▟█████▟█▌▝│ 
│                         ▝        ▖  ▗▟ ▟▗█▄▙█▟████████▘▘ ▖ │ 1.4
│                                 ▗▖▖ ▗ ▄█▗▟█████████▛▛ ▘ ▖  │ 
│                            ▝▖ ▖▖▐█▖▙▟████████████▛▞▀▘      │ 
│                           ▗ ▞▟ █▛▟████████████▀▚▝▘         │ 
│                       ▝   ▄▄▀▙██████████████▚▘▘            │ 
│                        ▐▗▐▛███████████████▝▘ ▗             │ 1.2
│                      ▄▄▄▟█████████████▙▚▀ ▝▗               │ 
│                  ▗ ▄▟█████████████▜▀▘▀▗▘▗                  │ 
│               ▖  ▄▟███████████▛▛█▜▙▘▜ ▖▗ ▖ ▀               │ 
│              ▄▄▟▟██████████▛█▜▝▌▚▗     ▖                   │ 1.0
│            ▄███████████▛▛▛  ▝▘▗▘ ▖    ▖                    │ 
│        ▗▄▙███████████▀▜▝▘      ▝     ▖ ▘    ▗              │ 
│       ▟██████████▛▀▘ ▘ ▝       ▘                           │ 
│   ▗▟█████████▛▀▀▝                                          │ 0.8
│ ▗▄████████▀▀▘▀                                             │ 
│▙▟████▛▀▛▞                                                  │ 
└────────────────────────────────────────────────────────────┘
       0.8            1.0           1.2            1.4
Reading Files: 100%|██████████| 29/29 [00:10<00:00,  2.90it/s]
Found 0 inf sequences.
Found 0 nan sequences.
R^2: 0.8719144805523465
             Intensity: Predicted vs Experimental
┌────────────────────────────────────────────────────────────┐
│                 ▖▐▝▌▞█▘██▜▜▛█▛▙█▚█▙▟██████████████████████▛│ 1.0
│                 ▟▞▟▗▖▐▀█▚▜█▟▌▝▟▙█▜████████████████████████▙│ 
│                 ▗▛  ▝▖▖▟▛▐▙▚▄▛█▄██████████████████████████ │ 
│                ▗▀ ▖▄▘▙▖▙▟█▛▞██████████████████████████████▖│ 
│                 ▄█ ▖▚▖▙▜▙█▟███████████████████████████████▖│ 
│                 ▖▚██▐▄█▙██████████████████████████████████ │ 
│                 ▝▟█▟▙████████████████████████████████████▌ │ 
│         ▝      ▝│▟██▛████████████████████████████████████  │ 
│                ▘▐▛███████████████████████████████████████▖ │ 0.5
│                 ▟████████████████████████████████████▙█▌█▀ │ 
│                ▖███████████████████████████████████▙█████  │ 
│                ▗▐██████████████████████████████████▀▙██▙▙  │ 
│                ▐█████████████████████████████████▟███▐█▀▖  │ 
│              ▜▚▐███████████████████████████████▐██▟▌▜▝█▌▝▘ │ 
│              ▝▖████████████████████████████████▙█▛▛▘▞▌▀▙▞  │ 
│           ▘▖▗▐████████████████████████████▛█▌▀▘▜▛▛█▛▙▛  ▝  │ 
│▖▖▁▁▁▗▐▖▝█▙▙█████████████████████████████▟███▟▚▟▞▛█▄▙▙▄▗▙▗▖▁│ 0.0
└────────────────────────────────────────────────────────────┘
     -0.2        0.0        0.2        0.5        0.8

Development

Read the CONTRIBUTING.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pepboost-0.1.2.tar.gz (373.7 kB view details)

Uploaded Source

Built Distribution

pepboost-0.1.2-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file pepboost-0.1.2.tar.gz.

File metadata

  • Download URL: pepboost-0.1.2.tar.gz
  • Upload date:
  • Size: 373.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pepboost-0.1.2.tar.gz
Algorithm Hash digest
SHA256 88633fd17988edd645cd1bcb7ffee1e9a61940fa471173df9f0cd7af9c515f75
MD5 9ced049db3e739fb857084ef29e48dde
BLAKE2b-256 7388ece7b852623096221d139d2956dd8fd82bae36f0765352ed967f382dae38

See more details on using hashes here.

File details

Details for the file pepboost-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pepboost-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pepboost-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 814b980273a59de5be68d8aacc566f89de2402aaa5752cbb10815b3f15aa7abd
MD5 a2d7b92d9611848bb2e8c03cbd1d8868
BLAKE2b-256 eba9c6c85364a814d2476f5928ace8c1b338a8540726cd1257395020835d9fd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page