Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

http://erig.univ-pau.fr/PERDIDO/

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nestedEntity in doc.nested_named_entities:
    print(f'entity: {nestedEntity.text}\ttag: {nestedEntity.tag}')
    if nestedEntity.tag == 'place':
        for t in nestedEntity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.23.tar.gz (34.2 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.23-py3-none-any.whl (35.2 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.23.tar.gz.

File metadata

  • Download URL: perdido-0.1.23.tar.gz
  • Upload date:
  • Size: 34.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.23.tar.gz
Algorithm Hash digest
SHA256 083d0c4c0d8b0f354f6fe07de2c2e9140d287be0ad68aa9e72da5f712bb247b6
MD5 7e42e27e4713a1f968c75218cb2eb257
BLAKE2b-256 55a7b684fbb705c299ccaf81352e4508d7d9a9f6921443de9650822edfed79be

See more details on using hashes here.

File details

Details for the file perdido-0.1.23-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.23-py3-none-any.whl
  • Upload date:
  • Size: 35.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.23-py3-none-any.whl
Algorithm Hash digest
SHA256 36639788b3ef94bfb76694a36e09dadf5739b8bbcf6d784eeb772a607640cca1
MD5 61a3a57f63ab65ad196ccb05cbfc29fd
BLAKE2b-256 8ee6990c4c800567357dc9af2d85cb793dec085509a23f1d105756eb8ea3ce17

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page