Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

http://erig.univ-pau.fr/PERDIDO/

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nestedEntity in doc.nested_named_entities:
    print(f'entity: {nestedEntity.text}\ttag: {nestedEntity.tag}')
    if nestedEntity.tag == 'place':
        for t in nestedEntity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.24.tar.gz (34.2 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.24-py3-none-any.whl (35.2 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.24.tar.gz.

File metadata

  • Download URL: perdido-0.1.24.tar.gz
  • Upload date:
  • Size: 34.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.24.tar.gz
Algorithm Hash digest
SHA256 97356fd1044067bf820138d417a9d8da27c1b283e78d5f0b3a390ea893036f34
MD5 eeb5e3ffed35afdeedf53149e3d74d3d
BLAKE2b-256 9e84e63a1d1baf59c9b361c1b037e08c6e316e858b7442ca1d51314f48bfe23a

See more details on using hashes here.

File details

Details for the file perdido-0.1.24-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.24-py3-none-any.whl
  • Upload date:
  • Size: 35.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 eac6192fb5985ce1965c0098152200b903df7a64818714ba6f1f10203829ec10
MD5 424ee72e073b2e446958a4b45fa397e7
BLAKE2b-256 d730c2a1230f5146b592d7ba0ca4b468d0be5ae71062acc0d2f951a9b5e3e5f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page