Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

http://erig.univ-pau.fr/PERDIDO/

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nestedEntity in doc.nested_named_entities:
    print(f'entity: {nestedEntity.text}\ttag: {nestedEntity.tag}')
    if nestedEntity.tag == 'place':
        for t in nestedEntity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.26.tar.gz (34.7 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.26-py3-none-any.whl (36.0 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.26.tar.gz.

File metadata

  • Download URL: perdido-0.1.26.tar.gz
  • Upload date:
  • Size: 34.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.26.tar.gz
Algorithm Hash digest
SHA256 a9404480c03d46b0be3609665790d46ad15e091bfcb6a96dcff2d33518b5d5f1
MD5 fe32899d0ac6d4afb56fa13fe56b1c31
BLAKE2b-256 739d1f81982ebd92d5c49bcd1609b7a5444c32ecbd5cffdf5906b7526333f925

See more details on using hashes here.

File details

Details for the file perdido-0.1.26-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.26-py3-none-any.whl
  • Upload date:
  • Size: 36.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.26-py3-none-any.whl
Algorithm Hash digest
SHA256 e1d47fdff8f9f2a3633c0fa1d1f65a7329ae03e51759f873f06ac78bd9b50748
MD5 8351ee191ef1dfbf23b7fc6c1fda8dc9
BLAKE2b-256 20daa5ae9fcb1b5292e302851343a46f1a31cdedb3c7785a5f7eb2552dcaff88

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page