Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nestedEntity in doc.nested_named_entities:
    print(f'entity: {nestedEntity.text}\ttag: {nestedEntity.tag}')
    if nestedEntity.tag == 'place':
        for t in nestedEntity.toponyms:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.28.tar.gz (34.7 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.28-py3-none-any.whl (36.0 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.28.tar.gz.

File metadata

  • Download URL: perdido-0.1.28.tar.gz
  • Upload date:
  • Size: 34.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.28.tar.gz
Algorithm Hash digest
SHA256 25f52b7daaea1d52ddfdade0d56bdf7e14ffef7cbe3062644c14e70519f5a821
MD5 726bc86caac130cf538a5f9b6ab70cdd
BLAKE2b-256 ac0d11087104d034e42e262827c5a54e3e4d17293fdb53624834fc5954cf848c

See more details on using hashes here.

File details

Details for the file perdido-0.1.28-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.28-py3-none-any.whl
  • Upload date:
  • Size: 36.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.28-py3-none-any.whl
Algorithm Hash digest
SHA256 df06392e8b0a6dd7255d6f0266a89d2b76341e21f053fc4ab9d7fc9baf505ae0
MD5 c5c882c0c8c1fa9db648591da7ec6678
BLAKE2b-256 4cc6f00bad0d0cda7e1cab7f03cc3224b1be4c8e3c299ecf9bb6002200a24e88

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page