Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nested_entity in doc.nested_named_entities:
    print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
    if nested_entity.tag == 'place':
        for t in nested_entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.29.tar.gz (34.7 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.29-py3-none-any.whl (36.0 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.29.tar.gz.

File metadata

  • Download URL: perdido-0.1.29.tar.gz
  • Upload date:
  • Size: 34.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.29.tar.gz
Algorithm Hash digest
SHA256 1b6bd865f6eeef226cf008f680830051d77fed96b3d233dd19644f9dd4ba95de
MD5 79e25a06640bf62f504692f03e5d5b31
BLAKE2b-256 87ad0b13cbac26e23f007215ca98fe0c7b65b017c1a72f44c381cfcfc7050089

See more details on using hashes here.

File details

Details for the file perdido-0.1.29-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.29-py3-none-any.whl
  • Upload date:
  • Size: 36.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.29-py3-none-any.whl
Algorithm Hash digest
SHA256 3ee32904a6d1657bfbfba9507be7542ade79cd2a8b0312f68453ab52e23e732b
MD5 fd48ad25a11ecf2517bd90e61358d85e
BLAKE2b-256 43e9fa113c0ad67f71dd0a9bab102a168d6e981e97c01588ec35a723ae529849

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page