Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

geoparser = Geoparser(version='Standard')
doc = geoparser('Je visite la ville de Lyon, Annecy et Chamonix.')
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nested_entity in doc.nested_named_entities:
    print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
    if nested_entity.tag == 'place':
        for t in nested_entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'Annecy', 'Chamonix'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Get the toponym candidates as a GeoDataframe

print(doc.to_geodataframe())

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.34.tar.gz (61.3 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.34-py3-none-any.whl (98.6 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.34.tar.gz.

File metadata

  • Download URL: perdido-0.1.34.tar.gz
  • Upload date:
  • Size: 61.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.34.tar.gz
Algorithm Hash digest
SHA256 4543e1d7aa7210331aef2b4b4ac910bf3199dcc8f72fe9cbdf4044b878ddc43f
MD5 17bb2c69a9a4ed1ed20dec2853f46e4f
BLAKE2b-256 163b9fa9d85adb940338b61e0f36e60eeb38f5f3200360b4baf1c0367d49a340

See more details on using hashes here.

File details

Details for the file perdido-0.1.34-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.34-py3-none-any.whl
  • Upload date:
  • Size: 98.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.34-py3-none-any.whl
Algorithm Hash digest
SHA256 45a6404425668cafa60e9f18aefbb2c8fc4653cd296209e23e06545aec9b9ac0
MD5 5676ca222da578b290ed09184dfdc234
BLAKE2b-256 cb1c4ebd3dfb9679cede2aeeb4824e7203154fda2a602b164d2771922787d87e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page