Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

text = "J'ai rendez-vous proche de la place Bellecour, de la place des Célestins, au sud de la fontaine des Jacobins et près du pont Bonaparte."
geoparser = Geoparser(version='Standard')
doc = geoparser(text)
  • The version parameter can take 2 values: Standard (default), Encyclopedie.

Get tokens

  • Access token attributes:
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the XML-TEI output with XML syntax highlighting

from display_xml import XML
XML(doc.tei, style='lovelace')

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nested_entity in doc.nested_named_entities:
    print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
    if nested_entity.tag == 'place':
        for t in nested_entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of spatial relations

for sp_relation in doc.sp_relations:
    print(f'spatial relation: {sp_relation.text}\ttag: {sp_relation.tag}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Display the map (using folium library)

doc.get_folium_map()

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'la place des Célestins', 'la fontaine des Jacobins'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Get the toponym candidates as a GeoDataframe

print(doc.to_geodataframe())

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Tutorials

Cite this work

Moncla, L. and Gaio, M. (2023). Perdido: Python library for geoparsing and geocoding French texts. In proceedings of the First International Workshop on Geographic Information Extraction from Texts (GeoExT'23), ECIR Conference, Dublin, Ireland.

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.44.tar.gz (61.3 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.44-py3-none-any.whl (98.6 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.44.tar.gz.

File metadata

  • Download URL: perdido-0.1.44.tar.gz
  • Upload date:
  • Size: 61.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for perdido-0.1.44.tar.gz
Algorithm Hash digest
SHA256 7deaec4334f40d58d70a963d0fd37b6e5dae0f63d0c2fb443183ba5400cc2c22
MD5 b8e436e8eb9e72ca88e7c9efafdbc2db
BLAKE2b-256 6fafe387774ce7202bdf50352f13dfa7c63747912f085cff2e5d83c512ca5b4b

See more details on using hashes here.

File details

Details for the file perdido-0.1.44-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.44-py3-none-any.whl
  • Upload date:
  • Size: 98.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for perdido-0.1.44-py3-none-any.whl
Algorithm Hash digest
SHA256 3cb0b687238a5efb10d1a925275f128f23a18b867d63ce97ef3d4a600fdb8741
MD5 db36fa8cad7943fb652f9914fccf865c
BLAKE2b-256 8bd6f22826689fbc93ad243f795e349b6eefd5845b4b3846629410bb6555df5f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page