Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

text = "J'ai rendez-vous proche de la place Bellecour, de la place des Célestins, au sud de la fontaine des Jacobins et près du pont Bonaparte."
geoparser = Geoparser()
doc = geoparser(text)

Some parameters can be set when initializing the Geoparser object:

  • version: Standard (default), Encyclopedie
  • pos_tagger: spacy (default), stanza, and treetagger

Get tokens

  • Access token attributes (text, lemma and UPOS part-of-speech tag):
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the XML-TEI output with XML syntax highlighting

from display_xml import XML
XML(doc.tei, style='lovelace')

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nested_entity in doc.nested_named_entities:
    print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
    if nested_entity.tag == 'place':
        for t in nested_entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of spatial relations

for sp_relation in doc.sp_relations:
    print(f'spatial relation: {sp_relation.text}\ttag: {sp_relation.tag}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Display the map (using folium library)

doc.get_folium_map()

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Some parameters can be set when initializing the Geocoder object:

  • sources:
  • max_rows:
  • country_code:
  • bbox:

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'la place des Célestins', 'la fontaine des Jacobins'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Get the toponym candidates as a GeoDataframe

print(doc.to_geodataframe())

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Tutorials

Cite this work

Moncla, L. and Gaio, M. (2023). Perdido: Python library for geoparsing and geocoding French texts. In proceedings of the First International Workshop on Geographic Information Extraction from Texts (GeoExT'23), ECIR Conference, Dublin, Ireland.

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.48.tar.gz (61.3 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.48-py3-none-any.whl (98.6 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.48.tar.gz.

File metadata

  • Download URL: perdido-0.1.48.tar.gz
  • Upload date:
  • Size: 61.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for perdido-0.1.48.tar.gz
Algorithm Hash digest
SHA256 ca226aca0677b6e3f74f9a111ac8ece295636800c614e479f75643895c10def9
MD5 6133c36d67110703d215529f0cada46f
BLAKE2b-256 4c4410f6037ac30d7e3c3715dbf78df1a9a4465f135130fcaaf96ae43874a30b

See more details on using hashes here.

File details

Details for the file perdido-0.1.48-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.48-py3-none-any.whl
  • Upload date:
  • Size: 98.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for perdido-0.1.48-py3-none-any.whl
Algorithm Hash digest
SHA256 1e3ead7f8960568f912e45c4293165fee1423bce6f462aaad1059f17c00fc4e6
MD5 722d3822a4d190916fd4cc32855e3c8f
BLAKE2b-256 435bbe8ca412ae33359afd983e0e0c9a0f2de272714efce240386759b2ffc91a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page