Skip to main content

PERDIDO Geoparser python library

Project description

Perdido Geoparser Python library

PyPI PyPI - License PyPI - Python Version

Installation

To install the latest stable version, you can use:

pip install --upgrade perdido

Quick start

Geoparsing

Binder Open In Colab

Import

from perdido.geoparser import Geoparser

Run geoparser

text = "J'ai rendez-vous proche de la place Bellecour, de la place des Célestins, au sud de la fontaine des Jacobins et près du pont Bonaparte."
geoparser = Geoparser()
doc = geoparser(text)

Some parameters can be set when initializing the Geoparser object:

  • version: Standard (default), Encyclopedie
  • pos_tagger: spacy (default), stanza, and treetagger

Get tokens

  • Access token attributes (text, lemma and UPOS part-of-speech tag):
for token in doc:
    print(f'{token.text}\tlemma: {token.lemma}\tpos: {token.pos}')
  • Get the IOB format:
for token in doc:
    print(token.iob_format())
  • Get a TSV-IOB format:
for token in doc:
    print(token.tsv_format())

Print the XML-TEI output

print(doc.tei)

Print the XML-TEI output with XML syntax highlighting

from display_xml import XML
XML(doc.tei, style='lovelace')

Print the GeoJSON output

print(doc.geojson)

Get the list of named entities

for entity in doc.named_entities:
    print(f'entity: {entity.text}\ttag: {entity.tag}')
    if entity.tag == 'place':
        for t in entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of nested named entities

for nested_entity in doc.nested_named_entities:
    print(f'entity: {nested_entity.text}\ttag: {nested_entity.tag}')
    if nested_entity.tag == 'place':
        for t in nested_entity.toponym_candidates:
            print(f' latitude: {t.lat}\tlongitude: {t.lng}\tsource {t.source}')

Get the list of spatial relations

for sp_relation in doc.sp_relations:
    print(f'spatial relation: {sp_relation.text}\ttag: {sp_relation.tag}')

Shows named entities and nested named entities using the displacy library from spaCy

displacy.render(doc.to_spacy_doc(), style="ent", jupyter=True)
displacy.render(doc.to_spacy_doc(), style="span", jupyter=True)

Display the map (using folium library)

doc.get_folium_map()

Saving results

doc.to_xml('filename.xml')
doc.to_geojson('filename.geojson')
doc.to_iob('filename.tsv')
doc.to_csv('filename.csv')

Geocoding

Binder Open In Colab

Import

from perdido.geocoder import Geocoder

Geocode a single place name

geocoder = Geocoder()
doc = geocoder('Lyon')

Some parameters can be set when initializing the Geocoder object:

  • sources:
  • max_rows:
  • country_code:
  • bbox:

Geocode a list of place names

geocoder = Geocoder()
doc = geocoder(['Lyon', 'la place des Célestins', 'la fontaine des Jacobins'])

Get the geojson result

print(doc.geojson)

Get the list of toponym candidates

for t in doc.toponyms: 
    print(f'lat: {t.lat}\tlng: {t.lng}\tsource {t.source}\tsourceName {t.source_name}')

Get the toponym candidates as a GeoDataframe

print(doc.to_geodataframe())

Perdido Geoparser REST APIs

http://choucas.univ-pau.fr/docs#

Example: call REST API in Python

import requests

url = 'http://choucas.univ-pau.fr/PERDIDO/api/'
service = 'geoparsing'
data = {'content': 'Je visite la ville de Lyon, Annecy et le Mont-Blanc.'}
parameters = {'api_key': 'demo'}

r = requests.post(url+service, params=parameters, json=data)

print(r.text)

Tutorials

Cite this work

Moncla, L. and Gaio, M. (2023). Perdido: Python library for geoparsing and geocoding French texts. In proceedings of the First International Workshop on Geographic Information Extraction from Texts (GeoExT'23), ECIR Conference, Dublin, Ireland.

Acknowledgements

Perdido is an active project still under developpement.

This work was partially supported by the following projects:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perdido-0.1.49.tar.gz (61.3 MB view details)

Uploaded Source

Built Distribution

perdido-0.1.49-py3-none-any.whl (98.6 MB view details)

Uploaded Python 3

File details

Details for the file perdido-0.1.49.tar.gz.

File metadata

  • Download URL: perdido-0.1.49.tar.gz
  • Upload date:
  • Size: 61.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.49.tar.gz
Algorithm Hash digest
SHA256 8f1fc16a05fbce22b83f7aa13155620bc93135ae614fec65e90bb6f7e3075f87
MD5 15e7459a48e438275638f6dd8aa67def
BLAKE2b-256 dddec464aec0dc05fac1e98449403fedbe60c547361b321df65393596908515b

See more details on using hashes here.

File details

Details for the file perdido-0.1.49-py3-none-any.whl.

File metadata

  • Download URL: perdido-0.1.49-py3-none-any.whl
  • Upload date:
  • Size: 98.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for perdido-0.1.49-py3-none-any.whl
Algorithm Hash digest
SHA256 5b62adf1c397e172f36a89d8f419d010c493a99728366c5c139ddc45eb868e51
MD5 b04cea9df28c84a31938abbb026cbbe3
BLAKE2b-256 f64142b1d2d7f5b91f0b0f1f6bd9d6ed05a31ddade3b976b073fc47e7f47ee02

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page