Skip to main content

perfbench measures execution time of code snippets with Timeit and uses Plotly to visualize the results.

Project description

License Build Status PyPI version Pyversions

perfbench

About

perfbench measures execution time of code snippets with Timeit and uses Plotly to visualize the results.

Feature

  • It is possible to select measurement modes.

  • It is possible to switch between layout sizes dynamically.

  • It is possible to switch between axes scales dynamically.

  • It is possible to switch between subplots dynamically.

  • The result of the benchmark can be saved locally as a html.

  • The result of the benchmark can be saved locally as a png. Requires installation oforca. When not to use the function, you do not need to install orca separately.

Compatibility

perfbench works with Python 3.5 or higher.

Dependencies

Installation

pip install perfbench

Usage

Plotting a single figure. Here is the demonstration.

import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        )
    ],
    xlabel='dataset sizes',
    title='around vs rint',
)
bm.run()
bm.plot()
plot1

plot1

Plotting multiple plots on a single figure. Here is the demonstration.

import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float16),
            ],
            title='float16'
        ),
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float32),
            ],
            title='float32'
        ),
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        ),
    ],
    xlabel='dataset sizes',
    title='around vs rint',
)
bm.run()
bm.plot()
plot2

plot2

plot2

plot2

Switching between layout sizes.

import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        )
    ],
    xlabel='dataset sizes',
    title='around vs rint',
    layout_sizes=[
        LayoutSize(width=640, height=480, label='VGA'),
        LayoutSize(width=800, height=600, label='SVGA'),
        LayoutSize(width=1024, height=768, label='XGA'),
        LayoutSize(width=1280, height=960, label='HD 720p'),
    ]
)
bm.run()
bm.plot()
plot3

plot3

Save as a html.

# same as above
bm.save_as_html(filepath='/path/to/file')

Save as a png.

# same as above
bm.save_as_png(filepath='/path/to/file', width=1280, height=960)

Other Here are a few examples.

License

This software is released under the MIT License, see LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfbench-5.0.0.tar.gz (227.4 kB view details)

Uploaded Source

File details

Details for the file perfbench-5.0.0.tar.gz.

File metadata

  • Download URL: perfbench-5.0.0.tar.gz
  • Upload date:
  • Size: 227.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.3

File hashes

Hashes for perfbench-5.0.0.tar.gz
Algorithm Hash digest
SHA256 1e3496824a59d32bb87a81b98da07de13b63cd1d68d9470338a1d815c7c914b7
MD5 8bdde3b89eb4bbd3e80184e3ca3bf860
BLAKE2b-256 395095897d4413c5b5db3b1a9acc75b2c62e900748d29e9893ac06039daa36f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page