Skip to main content

perfbench measures execution time of code snippets with Timeit and uses Plotly to visualize the results.

Project description

License Build Status PyPI version Pyversions

perfbench

About

perfbench measures execution time of code snippets with Timeit and uses Plotly to visualize the results.

Feature

  • It is possible to select measurement modes.
  • It is possible to switch between layout sizes dynamically.
  • It is possible to switch between axes scales dynamically.
  • It is possible to switch between subplots dynamically.
  • The result of the benchmark can be saved locally as a html.
  • The result of the benchmark can be saved locally as a png. Requires installation oforca. When not to use the function, you do not need to install orca separately.

Compatibility

perfbench works with Python 3.4 or higher.

Dependencies

Installation

pip install perfbench

Usage

Plotting a single figure.
Here is the demonstration.
import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        )
    ],
    xlabel='dataset sizes',
    title='around vs rint',
)
bm.run()
bm.plot()
plot1

plot1

Plotting multiple plots on a single figure.
Here is the demonstration.
import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float16),
            ],
            title='float16'
        ),
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float32),
            ],
            title='float32'
        ),
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        ),
    ],
    xlabel='dataset sizes',
    title='around vs rint',
)
bm.run()
bm.plot()
plot2

plot2

plot2

plot2

Switching between layout sizes.

import numpy as np
from perfbench import *


bm = Benchmark(
    datasets=[
        Dataset(
            factories=[
                lambda n: np.random.uniform(low=-1., high=1., size=n).astype(np.float64),
            ],
            title='float64'
        )
    ],
    dataset_sizes=[2 ** n for n in range(26)],
    kernels=[
        Kernel(
            stmt='np.around(DATASET)',
            setup='import numpy as np',
            label='around'
        ),
        Kernel(
            stmt='np.rint(DATASET)',
            setup='import numpy as np',
            label='rint'
        )
    ],
    xlabel='dataset sizes',
    title='around vs rint',
    layout_sizes=[
        LayoutSize(width=640, height=480, label='VGA'),
        LayoutSize(width=800, height=600, label='SVGA'),
        LayoutSize(width=1024, height=768, label='XGA'),
        LayoutSize(width=1280, height=960, label='HD 720p'),
    ]
)
bm.run()
bm.plot()
plot3

plot3

Save as a html.

# same as above
bm.save_as_html(filepath='/path/to/file')

Save as a png.

# same as above
bm.save_as_png(filepath='/path/to/file', width=1280, height=960)
Other
Here are a few examples.

License

This software is released under the MIT License, see LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
perfbench-4.0.1-py3-none-any.whl (14.4 kB) Copy SHA256 hash SHA256 Wheel py3
perfbench-4.0.1.tar.gz (224.2 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page