Skip to main content

Send performance metrics about Python code to Statsd

Project description

perfmetrics

The perfmetrics package provides a simple way to add software performance metrics to Python libraries and applications. Use perfmetrics to find the true bottlenecks in a production application.

The perfmetrics package is a client of the Statsd daemon by Etsy, which is in turn a client of Graphite (specifically, the Carbon daemon). Because the perfmetrics package sends UDP packets to Statsd, perfmetrics adds no I/O delays to applications and little CPU overhead. It can work equally well in threaded (synchronous) or event-driven (asynchronous) software.

Complete documentation is hosted at https://perfmetrics.readthedocs.io

Latest release Supported Python versions CI Build Status Code Coverage Documentation Status

Usage

Use the @metric and @metricmethod decorators to wrap functions and methods that should send timing and call statistics to Statsd. Add the decorators to any function or method that could be a bottleneck, including library functions.

Sample:

from perfmetrics import metric
from perfmetrics import metricmethod

@metric
def myfunction():
    """Do something that might be expensive"""

class MyClass(object):
    @metricmethod
    def mymethod(self):
        """Do some other possibly expensive thing"""

Next, tell perfmetrics how to connect to Statsd. (Until you do, the decorators have no effect.) Ideally, either your application should read the Statsd URI from a configuration file at startup time, or you should set the STATSD_URI environment variable. The example below uses a hard-coded URI:

from perfmetrics import set_statsd_client
set_statsd_client('statsd://localhost:8125')

for i in xrange(1000):
    myfunction()
    MyClass().mymethod()

If you run that code, it will fire 2000 UDP packets at port 8125. However, unless you have already installed Graphite and Statsd, all of those packets will be ignored and dropped. Dropping is a good thing: you don’t want your production application to fail or slow down just because your performance monitoring system is stopped or not working.

Install Graphite and Statsd to receive and graph the metrics. One good way to install them is the graphite_buildout example at github, which installs Graphite and Statsd in a custom location without root access.

Pyramid and WSGI

If you have a Pyramid app, you can set the statsd_uri for each request by including perfmetrics in your configuration:

config = Configuration(...)
config.include('perfmetrics')

Also add a statsd_uri setting such as statsd://localhost:8125. Once configured, the perfmetrics tween will set up a Statsd client for the duration of each request. This is especially useful if you run multiple apps in one Python interpreter and you want a different statsd_uri for each app.

Similar functionality exists for WSGI apps. Add the app to your Paste Deploy pipeline:

[statsd]
use = egg:perfmetrics#statsd
statsd_uri = statsd://localhost:8125

[pipeline:main]
pipeline =
    statsd
    egg:myapp#myentrypoint

Threading

While most programs send metrics from any thread to a single global Statsd server, some programs need to use a different Statsd server for each thread. If you only need a global Statsd server, use the set_statsd_client function at application startup. If you need to use a different Statsd server for each thread, use the statsd_client_stack object in each thread. Use the push, pop, and clear methods.

Graphite Tips

Graphite stores each metric as a time series with multiple resolutions. The sample graphite_buildout stores 10 second resolution for 48 hours, 1 hour resolution for 31 days, and 1 day resolution for 5 years. To produce a coarse grained value from a fine grained value, Graphite computes the mean value (average) for each time span.

Because Graphite computes mean values implicitly, the most sensible way to treat counters in Graphite is as a “hits per second” value. That way, a graph can produce correct results no matter which resolution level it uses.

Treating counters as hits per second has unfortunate consequences, however. If some metric sees a 1000 hit spike in one second, then falls to zero for at least 9 seconds, the Graphite chart for that metric will show a spike of 100, not 1000, since Graphite receives metrics every 10 seconds and the spike looks to Graphite like 100 hits per second over a 10 second period.

If you want your graph to show 1000 hits rather than 100 hits per second, apply the Graphite hitcount() function, using a resolution of 10 seconds or more. The hitcount function converts per-second values to approximate raw hit counts. Be sure to provide a resolution value large enough to be represented by at least one pixel width on the resulting graph, otherwise Graphite will compute averages of hit counts and produce a confusing graph.

It usually makes sense to treat null values in Graphite as zero, though that is not the default; by default, Graphite draws nothing for null values. You can turn on that option for each graph.

CHANGES

4.2.0 (2025-09-19)

  • Drop support for Python 3.8 and 3.9.

  • Add support for Python 3.14.

4.1.0 (2024-06-11)

  • Add support for Python 3.13.

  • Drop support for Python 3.7.

  • Drop support for Manylinux 2010 wheels.

4.0.0 (2023-06-22)

  • Drop support for obsolete Python versions, including Python 2.7 and 3.6.

  • Add support for Python 3.12.

3.3.0 (2022-09-25)

  • Stop accidentally building manylinux wheels with unsafe math optimizations.

  • Add support for Python 3.11.

NOTE: This will be the last major release to support legacy versions of Python such as 2.7 and 3.6. Some such legacy versions may not have binary wheels published for this release.

3.2.0.post0 (2021-09-28)

  • Add Windows wheels for 3.9 and 3.10.

3.2.0 (2021-09-28)

  • Add support for Python 3.10.

  • Drop support for Python 3.5.

  • Add aarch64 binary wheels.

3.1.0 (2021-02-04)

  • Add support for Python 3.8 and 3.9.

  • Move to GitHub Actions from Travis CI.

  • Support PyHamcrest 1.10 and later. See issue 26.

  • The FakeStatsDClient for testing is now always true whether or not any observations have been seen, like the normal clients. See issue.

  • Add support for StatsD sets, counters of unique events. See PR 30.

3.0.0 (2019-09-03)

  • Drop support for EOL Python 2.6, 3.2, 3.3 and 3.4.

  • Add support for Python 3.5, 3.6, and 3.7.

  • Compile the performance-sensitive parts with Cython, leading to a 10-30% speed improvement. See https://github.com/zodb/perfmetrics/issues/17.

  • Caution: Metric names are enforced to be native strings (as a result of Cython compilation); they’ve always had to be ASCII-only but previously Unicode was allowed on Python 2. This is usually automatically the case when used as a decorator. On Python 2 using from __future__ import unicode_literals can cause problems (raising TypeError) when manually constructing Metric objects. A quick workaround is to set the environment variable PERFMETRICS_PURE_PYTHON before importing perfmetrics.

  • Make decorated functions and methods configurable at runtime, not just compile time. See https://github.com/zodb/perfmetrics/issues/11.

  • Include support for testing applications instrumented with perfmetrics in perfmetrics.testing. This was previously released externally as nti.fakestatsd. See https://github.com/zodb/perfmetrics/issues/9.

  • Read the PERFMETRICS_DISABLE_DECORATOR environment variable when perfmetrics is imported, and if it is set, make the decorators @metric, @metricmethod, @Metric(...) and @MetricMod(...) return the function unchanged. This can be helpful for certain kinds of introspection tests. See https://github.com/zodb/perfmetrics/issues/15

2.0 (2013-12-10)

  • Added the @MetricMod decorator, which changes the name of metrics in a given context. For example, @MetricMod('xyz.%s') adds a prefix.

  • Removed the “gauge suffix” feature. It was unnecessarily confusing.

  • Timing metrics produced by @metric, @metricmethod, and @Metric now have a “.t” suffix by default to avoid naming conflicts.

1.0 (2012-10-09)

  • Added ‘perfmetrics.tween’ and ‘perfmetrics.wsgi’ stats for measuring request timing and counts.

0.9.5 (2012-09-22)

  • Added an optional Pyramid tween and a similar WSGI filter app that sets up the Statsd client for each request.

0.9.4 (2012-09-08)

  • Optimized the use of reduced sample rates.

0.9.3 (2012-09-08)

  • Support the STATSD_URI environment variable.

0.9.2 (2012-09-01)

  • Metric can now be used as either a decorator or a context manager.

  • Made the signature of StatsdClient more like James Socol’s StatsClient.

0.9.1 (2012-09-01)

  • Fixed package metadata.

0.9 (2012-08-31)

  • Initial release.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfmetrics-4.2.0.tar.gz (150.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

perfmetrics-4.2.0-cp314-cp314-win_amd64.whl (178.7 kB view details)

Uploaded CPython 3.14Windows x86-64

perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_x86_64.whl (196.0 kB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_aarch64.whl (193.1 kB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

perfmetrics-4.2.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (193.2 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

perfmetrics-4.2.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl (192.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ s390x

perfmetrics-4.2.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl (200.0 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ppc64le

perfmetrics-4.2.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (191.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

perfmetrics-4.2.0-cp314-cp314-macosx_10_15_universal2.whl (242.6 kB view details)

Uploaded CPython 3.14macOS 10.15+ universal2 (ARM64, x86-64)

perfmetrics-4.2.0-cp313-cp313-win_amd64.whl (178.5 kB view details)

Uploaded CPython 3.13Windows x86-64

perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (195.8 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_aarch64.whl (192.5 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

perfmetrics-4.2.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (193.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

perfmetrics-4.2.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl (191.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ s390x

perfmetrics-4.2.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl (199.6 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ppc64le

perfmetrics-4.2.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (190.4 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

perfmetrics-4.2.0-cp313-cp313-macosx_10_13_universal2.whl (242.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

perfmetrics-4.2.0-cp312-cp312-win_amd64.whl (178.8 kB view details)

Uploaded CPython 3.12Windows x86-64

perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (196.4 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_aarch64.whl (192.9 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

perfmetrics-4.2.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (193.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

perfmetrics-4.2.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl (191.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ s390x

perfmetrics-4.2.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl (199.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

perfmetrics-4.2.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (190.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

perfmetrics-4.2.0-cp312-cp312-macosx_10_13_universal2.whl (242.0 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

perfmetrics-4.2.0-cp311-cp311-win_amd64.whl (177.9 kB view details)

Uploaded CPython 3.11Windows x86-64

perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (195.1 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_aarch64.whl (192.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

perfmetrics-4.2.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (192.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

perfmetrics-4.2.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl (192.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ s390x

perfmetrics-4.2.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl (201.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

perfmetrics-4.2.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (190.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

perfmetrics-4.2.0-cp311-cp311-macosx_10_9_universal2.whl (237.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

perfmetrics-4.2.0-cp310-cp310-win_amd64.whl (177.8 kB view details)

Uploaded CPython 3.10Windows x86-64

perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (194.5 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_aarch64.whl (192.2 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

perfmetrics-4.2.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (192.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

perfmetrics-4.2.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl (192.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ s390x

perfmetrics-4.2.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl (200.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

perfmetrics-4.2.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (190.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

perfmetrics-4.2.0-cp310-cp310-macosx_10_9_universal2.whl (237.8 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file perfmetrics-4.2.0.tar.gz.

File metadata

  • Download URL: perfmetrics-4.2.0.tar.gz
  • Upload date:
  • Size: 150.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for perfmetrics-4.2.0.tar.gz
Algorithm Hash digest
SHA256 89c8b37be7f945a5eefb8f3748a3ed90472c267574ecbe7388a7e930bbd2621a
MD5 e75d2cac447b3bec37a84f8c208f76ac
BLAKE2b-256 e01e64631b7896b438132824f2cc2ee4590cf61c2a6a0b40a54a7c5fe88c70bd

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: perfmetrics-4.2.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 178.7 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0rc1

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 1d32422b83f99d40e1bbf147a99dca34c9bae73500fe90031e706fce42971c18
MD5 d2e6d592137196a056841ccdfe96df38
BLAKE2b-256 a6ad2b9bccbb09725a553b1514d8116d8ee5e80506a2075ad8d20ba654a44193

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 58681194669a83759b4eb600f9b883bdda245832d491c617f4c5a3da34d1dc17
MD5 527a5d710ef9745e5de975c4d94e9d09
BLAKE2b-256 e6ab3c3815fc511a83d761604d4c9cfacb4e8c3e2bbea481c28e450eef565ab4

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f5ad790aaab84f7aed7b7a8997a48612424cc7097ec870939e5b83db2021909d
MD5 2c99c47262ee1388ab585038133f7802
BLAKE2b-256 4aba99ccd1d3fe4b1f55c6ffca392e09671b1952441280bcd259e2f6b7f68a5f

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f5da6ccdbbba17e2991dcd0755ba2200b19302f774e70853a83c77a45da0ef48
MD5 aa63b4c81a2f2996369410eb57ee654c
BLAKE2b-256 ce62610b444f867f39233e036f4416fd3a31169bce1b799b058c1a5c6773ddc0

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl
Algorithm Hash digest
SHA256 91de90b04a10527167b0c75167d3a48a6b4fedb1735c4a777eb6c34217c5cf42
MD5 a7dc7356a2cd1bd664725e9250f5da84
BLAKE2b-256 fe968db7af51fbee817a5169fcd051c8eddfa9a2372cbe21a0d2bc1dffe7bf80

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 4562aadb5f8e8497faffa67fc4eac957c2003f3207af2174b16170ef3c353c88
MD5 c3412b8aa7c510e3aa9d48c2c7b976e9
BLAKE2b-256 3d8ccdf359ccfe6d929c75647df253b73e4ce20f91388d07f9a65f5f3fed7771

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 41b4dfb5e38457b1e22ff94a9bed94f3caaa049b66bead95756bf8925e97a941
MD5 239fabe9cef13a694e13e66e2fda06a7
BLAKE2b-256 85cf5557689e6ec31259274c7d0ffc72635ad83bc2781b645fbbd8ef40c36abb

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp314-cp314-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp314-cp314-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 81e36da9919d59a10f698998924d4fa53693019cf353b9a2cc1da922cb0f4920
MD5 9c8eb745c67f57ce2ca051278ef80c87
BLAKE2b-256 4985521f78e688d52c1afa08a0b6f04f44974ef42d101e18b2ef8bd95b32f5bf

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 837a17d7d77e5d532bf60c38cc28cd3093cfc3323f3790ec26a958783027fd4a
MD5 ff078a04b8da01a94c61286e0cd7b038
BLAKE2b-256 c8a35889c744bdb98da1fec69aba7875f371ee9ea96afce1b48eecc4f6070d98

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4ec6d59ce36bafaf930d0591cb4c1dc672daf674d6417e8b253d11b1713e9648
MD5 963cda1268b503a62d9fc74bcfe1ac5e
BLAKE2b-256 5cdded3c17ee52eb0753336e896a959ad09cc0c7ba5d6ed07a980e2f71633e40

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 42bb21f3b2650c6c9f15d9f42181b758b4f04200755580ad21f756b0bc2acf01
MD5 a6be1e50a56779efb291e1a884adcb95
BLAKE2b-256 48dbcb62674d2904f5d93989dec709a1b27730fd4418d7ab6830ad07876ca958

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c5a4d3776bca55679a4c55d2857e94480581d7f6425e558ccac5d7e5df2df98b
MD5 eeeb52d59cb2f93469a39d4d55cd9855
BLAKE2b-256 797936797ccafbe86589f1ae627d500c75ade3d081a479d6abcb964299e9b03b

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl
Algorithm Hash digest
SHA256 56c8ad759431ce45a6a999782e70659dd0c416f3794411aefcfae7b5031f7bbd
MD5 0d1bc41f1b82b5a0a465b365eede2e5e
BLAKE2b-256 f60c7150ecbf537c81f6b1f5f1dba65295af95c4dc43c71762b39a0d709438bc

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 3fa7af06afc2b2e6631ef84688f3d5cf5e2708942808da2186d3cb798016b03d
MD5 6ff9a7c7d1f1d31cb8abc7f5f0dfa77e
BLAKE2b-256 eaebef7fb79778ef4ded1db7491907eb177478a862921b038ba0f9f14e182b14

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 cc7dcd67c4fc31ab9d7b9f40c366c3f3f24f554378a4b46e064348a13b259663
MD5 321f1e31725e0a3521cf0a93f95634a7
BLAKE2b-256 3c111bdad37498e0c440d98dca398cddb17f976345c3d38a1ceac0cc3bec0003

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2dd4122d543d8764ba06b5f1006a4119b6606e3f827601a5bc126c67a49cc94e
MD5 9f9c3a86406560942452182484ab78a6
BLAKE2b-256 d6054710ea80314a1fe6933bffe3b2332132211d851e841e0844048522ef5d20

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: perfmetrics-4.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 178.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ee37e0f5e8cb59759062fac014ddd209dceffae3329628efa38747407f3583b8
MD5 155d82c5c4f82aa82bbd23373a6b3c8f
BLAKE2b-256 1692315dc5d1431007106640387a6747c522e22a6d36f3b15c196d2ad596c9cd

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 38a09c47ca7f59095a1688e74be39d497bf6a61210e27e2c91c2d076b4c16951
MD5 b6a0a521c2a278cb446323124b69768e
BLAKE2b-256 b2f50d4d4fe1de8097fd7e4faac6acc22ce57cfe4f013653c593b8b4956bd21e

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d62fed39e06ef05136c66594c6f077296e728075a4fe2d761bfdd567f106ea26
MD5 f38d89eab60fa3250b752a22c46a8fb4
BLAKE2b-256 1afa6d8ed5401d7000b28f68fc5cf14524e84847e431e547d78ef39615ce2b00

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e9c6c5091157d1cb1750892b8c5fb8a4282b79dd3bc889939173a27ecdd0e5fa
MD5 c3afdb4654b8f12b096b2fc9ad298b8d
BLAKE2b-256 a3a6d25638ca703532d604417fd8b1c4432336a9359bdf549e5ab16f6e56cbe5

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
Algorithm Hash digest
SHA256 04fc64a5e10d01f40212888cb9b9106dab5239a2db616d3fa94535a1dee9f186
MD5 37752e05380676201953c4bffd631801
BLAKE2b-256 01faa4197eb5ee28d14d45c37617f3ff6edcb2fb68d2a0aa7ec5c0f5e1ec46c7

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 960ad774afba7f9c13ca2de548528979d946e42b9712782f76242e2754c7e45f
MD5 20ae5524150db1726a93e549f35bf671
BLAKE2b-256 871961d4d4a38b8d4245bcd2c6cfe716303937267d8c49f7693a9c0a58c298f4

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 38eb7f1c73218f61d9c5e95711618da3c52d57b1c7a114e39f5a88cdb81b6772
MD5 9806cf90ba8f9af04afc93e453e3dc70
BLAKE2b-256 a36a0a5140a8360fb47d81858634f3522b45cbcf00895034e7ba9486096a8498

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 01da96e08d76cb7b2e5f5934d4c1320ba3dc45b39e9f5f402ded652874dfbb8b
MD5 fa6aebc0bb74c8a1de698bcb577d9c62
BLAKE2b-256 ffda49fdae588e72a58bec54e4df5569effea8a29942d2ab190d94a64619507c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3c4d5db57f97ce170817e7b27f88cbef2184fc96d26ce9da11f5dc8e04832cd3
MD5 a9e10a07f3cd144920d2d98f12252ca9
BLAKE2b-256 633944fe96d6a73e8fc6e03d74ed9da8c335c8efd397502f64846d97ff4bde7f

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dff42a77588e451550e047f0de48190935cd33e84fd6db9052a9cf93504976a1
MD5 af2bab881e52a06838afc084657b3e91
BLAKE2b-256 9fca483d3df10057e383808f0a90bb63477b78b7b898521bba4663488c086777

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 48232b255fa055b0c8dd95680d3f278581b8757f54183bf0f8ffad611645f684
MD5 d7bd270790d14bcedc53860d5daa2271
BLAKE2b-256 b8409e679c38037f9f62f4f6ef418b1354e12097e8b1651e9c5990cbc53e05cc

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d3d7783c2dc2a6804e46d1b8a095197861cdda174aac33cbe35806e2eb61cd0f
MD5 2461f2a3eaf690d73091b26e5fe233b8
BLAKE2b-256 460b9dee90a731f8459b548d4c05437a8416258f262666f734e48299c6adfb72

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
Algorithm Hash digest
SHA256 ce61d3c82965ade25a88112eca600fd1da62dd0e9756663341f1bd0de1e59bca
MD5 8249aa111c4295df254c2084dc1aa388
BLAKE2b-256 e2616f6a553f4c4add8ceb45cabeb9bb62f96842018351da77c3dd8fb42309ec

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 f95ed30e3ace4958d233a452eefb2ab14503711d627b2c4fb4aacf64ccf4cb76
MD5 46c1b3975bb828e3c9caa0ba1d5d59eb
BLAKE2b-256 74919c856d97bdeb069cad7c3bf995d1824e5b8f50e3c04593382f1bab03fc79

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 db9258e06e7f8b27db94dd58479d0042683a0bee416d07845782ad339310925c
MD5 461a06891d20989a675cfd75e26e2698
BLAKE2b-256 5e34e31ebf650318f2648e31a9b8ddb090b02aa767f90d00e9a032d5582fa3be

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7157a63e725ad4e8c275627da5c41d3bbce539d5efe9937b9d672a7f7c6b68e7
MD5 88f30852857eaa1652bdf9ed2076ddb9
BLAKE2b-256 6aac7aa5652789eb2d08fd018f35e39a720cc633329f67869c304417211ff33c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: perfmetrics-4.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 177.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.11

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1d0a3228ee890d51e6756145c5df79d79f3caf13b721b0e840dad6bbd29b9160
MD5 03a7878a7833cc0288de32c82a9d41dd
BLAKE2b-256 4e1fc1009eb8b151366030e8987f5f9f461de5294743df123c15594a09a11a91

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 547bd7d490d98db59a45acf3f0108ea160e55e8120efc0da856bb85dd9c838c8
MD5 ec5aad1cc38ab1cc343769994f18d29c
BLAKE2b-256 152a2040fbf20c6337cf9522e19f4052c25cb67cae1fdbc5d5ebe3d6ac7e3c6e

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 07f8b6fdd8d02d03e4a448e41c6c24f115479e625985ae07b8f3e46efdb2b147
MD5 4f49c7ad17952a359b7e5e17049cb3b3
BLAKE2b-256 244aea9c7cef5b68927d503d1668571b762ddcbb645e0850c4da951cfbc3e847

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1e5a187d002fc1519637410aa850e6d7bea2f22ffeb4db140ab71e90614ec45f
MD5 42550f5e210d2f7b7ad01105c93f1060
BLAKE2b-256 8a228d1b4f9cde22954d01573e16784460f968c38df6ab9cc072eb107bb95d15

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
Algorithm Hash digest
SHA256 6cca8fa0a56df4763646d5cffa9682820d6fd42775e748eef70b821fd6d6e88b
MD5 4b861745f1c9e92b853ae0732aac2699
BLAKE2b-256 5182b364813f423a5a5c16dfb8af43d807fe62a6d9d5864092ee62d8b01f8d01

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 ef31a55fb761ef8f921f7d9371cdf0099374e07c8950862bd7c2c4acc470aa8f
MD5 74b52d63cc66b7db81044eb9f1415981
BLAKE2b-256 6ced6cb76e7ca907fffd98e219f5a36cb0defd470d3cd41f0044bb500e05b199

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 878fb0145902b414432065bc4cf56a9bfda3d88b3d89bcdc6f635eaf08419c3f
MD5 61b24717462d254f7b38ddb8d5550a69
BLAKE2b-256 10e983cfcdbe2c2b048ee4791f45d0444df95b72b6da7853505d5fadfae9a3da

See more details on using hashes here.

File details

Details for the file perfmetrics-4.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 30e93299ffef0a7876d72a7f5bc6b4cbd690871127b890d07934f45bc6d77771
MD5 83546bb4ec0b79734ecb137841e6db59
BLAKE2b-256 6f5d423ab032dbc1ba56fa6c8429bd258197087f801b6d73b6f0f133a7d4faf2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page