Skip to main content

Performance indicators calculation and Time series visualization

Project description

Features

  • Performance indicators calculation

  • Supports single time series data and multiple time series data with different time spans

  • Time series visualization

Installation

You can install “performance-analysis” via ‘pip’_ from ‘PyPI’_:

$ pip install performance-analysis

Usage

  • Performance part

from performance_analysis.Performance import Performance
# Input return data
raw_return_data = pd.read_csv("./raw_return_data.csv")
# Just some examples. For more functions, you can explore the package
ann_rtn = Performance.annualized_return(raw_return_data, period = Constant.DAILY, logreturn = False)
var = Performance.value_at_risk(raw_return_data, significance_level = 0.05)
sharpe = Performance.sharpe_ratio(raw_return_data, risk_free = 0., logreturn = False)
calmar = Performance.calmar_ratio(raw_return_data, period = Constant.DAILY, logreturn = False)
  • Computes personal specified indicators

'''
indicators = {
        0 : annualized_return,
        1 : annualized_sd,
        2 : max_drawdown,
        3 : sharpe_ratio,
        4 : calmar_ratio,
        5 : burke_ratio,
        6 : downside_risk,
        7 : sortino_ratio,
        8 : tracking_error,
        9 : information_ratio,
        10 : capm_beta,
        11 : capm_alpha,
        12 : treynor_ratio,
        13 : skewness,
        14 : kurtosis,
        15 : value_at_risk,
        16 : conditional_value_at_risk,
        17 : omega_ratio,
        18 : tail_dependence,
        19 : TDC,
    }
'''

args = (0,1,2,3,4)
kwargs = {
    "annualized_return" : {"returns" : single_return_data},
    "annualized_sd" : {"returns" : single_return_data},
    "max_drawdown" : {"returns" : single_return_data},
    "sharpe_ratio" : {"returns" : single_return_data},
    "calmar_ratio" : {"returns" : single_return_data}
}
performance = Performance.performance_dashboard(*args, **kwargs)
  • Plotting part

from performance_analysis.Plotting import Plotting
# read data, set index and convert to datatime
single_return_data = pd.read_csv("./single_return_data.csv")
single_return_data.set_index(['Date'],inplace=True)
single_return_data.index = pd.to_datetime(single_return_data.index, format='%Y%m%d', errors='coerce')

Plotting.plot_cum_return_and_drawdown(single_return_data)
Plotting.plot_monthly_return_heatmap(single_return_data, show_text = True)
Plotting.plot_seasonal_effect(single_return_data)

License

Distributed under the terms of the ‘MIT’_ license, “performance-analysis” is free and open source software

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

performance-analysis-0.1.8.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

performance_analysis-0.1.8-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file performance-analysis-0.1.8.tar.gz.

File metadata

  • Download URL: performance-analysis-0.1.8.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.14 CPython/3.8.13 Darwin/22.2.0

File hashes

Hashes for performance-analysis-0.1.8.tar.gz
Algorithm Hash digest
SHA256 a39284d34e2e818d2ceadcc0af391ca6232861077178ec430538d2e42df177b2
MD5 2b588b98cd90805846123f49c2718b53
BLAKE2b-256 efb83e4136df0a2ba98e41d9470da52a13f7da72d1a391f06a2bfe8ef5580f6a

See more details on using hashes here.

File details

Details for the file performance_analysis-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for performance_analysis-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 4efa54cc0b65c791d0e2f51c47f6ba4f80858cd5c7f1b03d2caf19f3017c4e3f
MD5 03ef0455a6af186ae76ecd2749e16b65
BLAKE2b-256 3f2954388fdd472a3366ac98a3c3023d4d8f4fd291d538ed230b7472c612c740

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page