Skip to main content

Performance plots for Python code snippets

Project description

perfplot

CircleCI codecov Code style: black PyPi Version GitHub stars PyPi downloads

perfplot extends Python's timeit by testing snippets with input parameters (e.g., the size of an array) and plotting the results. (By default, perfplot asserts the equality of the output of all snippets, too.)

For example, to compare different NumPy array concatenation methods, the script

import numpy
import perfplot

perfplot.show(
    setup=lambda n: numpy.random.rand(n),  # or simply setup=numpy.random.rand
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(a)",
    # More optional arguments with their default values:
    # title=None,
    # logx=False,
    # logy=False,
    # equality_check=numpy.allclose,  # set to None to disable "correctness" assertion
    # automatic_order=True,
    # colors=None,
    # target_time_per_measurement=1.0,
    # time_unit="auto"  # set to one of ("s", "ms", "us", or "ns") to force plot units
)

produces

Clearly, stack and vstack are the best options for large arrays.

Benchmarking and plotting can be separated, too. This allows multiple plots of the same data, for example:

out = perfplot.bench(
    # same arguments as above
    )
out.show()
out.save('perf.png')

Other examples:

Installation

perfplot is available from the Python Package Index, so simply do

pip3 install perfplot --user

to install or upgrade.

Testing

To run the perfplot unit tests, check out this repository and type

pytest

License

perfplot is published under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfplot-0.6.6.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

perfplot-0.6.6-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file perfplot-0.6.6.tar.gz.

File metadata

  • Download URL: perfplot-0.6.6.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.0

File hashes

Hashes for perfplot-0.6.6.tar.gz
Algorithm Hash digest
SHA256 d9aedbf3f386c696377af52afb3fcddeae9d778794fa01cf27e92b13b47c8b4d
MD5 58f1d318f30145d84744d29cd1ffb580
BLAKE2b-256 abd5cb2386c5198c0e2c4f6eb25710e09abe76827f81afd663f4b4c3d54dad6e

See more details on using hashes here.

File details

Details for the file perfplot-0.6.6-py3-none-any.whl.

File metadata

  • Download URL: perfplot-0.6.6-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.0

File hashes

Hashes for perfplot-0.6.6-py3-none-any.whl
Algorithm Hash digest
SHA256 20de9bb5de4dbd64405e61bdd5a4397623e7d7295a319f620772e40217b1b929
MD5 1c6a0a7092b36741ddf330a927347458
BLAKE2b-256 21ab684fa93af378368e3e4f027ef3f53ba3fbcffb93fabc74e5cf3647f08cdc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page