Skip to main content

Performance plots for Python code snippets

Project description

perfplot

CircleCI codecov Code style: black PyPI pyversions PyPi Version GitHub stars PyPi downloads

perfplot extends Python's timeit by testing snippets with input parameters (e.g., the size of an array) and plotting the results. (By default, perfplot asserts the equality of the output of all snippets, too.)

For example, to compare different NumPy array concatenation methods, the script

import numpy
import perfplot

perfplot.show(
    setup=lambda n: numpy.random.rand(n),  # or simply setup=numpy.random.rand
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(a)",
    # More optional arguments with their default values:
    # title=None,
    # logx="auto",  # set to True or False to force scaling
    # logy="auto",
    # equality_check=numpy.allclose,  # set to None to disable "correctness" assertion
    # automatic_order=True,
    # colors=None,
    # target_time_per_measurement=1.0,
    # time_unit="s",  # set to one of ("auto", "s", "ms", "us", or "ns") to force plot units
    # relative_to=1,  # plot the timings relative to one of the measurements
    # flops=lambda n: 3*n,  # FLOPS plots
)

produces

Clearly, stack and vstack are the best options for large arrays.

Benchmarking and plotting can be separated, too. This allows multiple plots of the same data, for example:

out = perfplot.bench(
    # same arguments as above
    )
out.show()
out.save("perf.png", transparent=True, bbox_inches="tight")

Other examples:

Installation

perfplot is available from the Python Package Index, so simply do

pip install perfplot

to install or upgrade.

Testing

To run the perfplot unit tests, check out this repository and type

pytest

License

perfplot is published under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfplot-0.7.2.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

perfplot-0.7.2-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file perfplot-0.7.2.tar.gz.

File metadata

  • Download URL: perfplot-0.7.2.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for perfplot-0.7.2.tar.gz
Algorithm Hash digest
SHA256 d8109e542e6fcdf658497915729d18da6a10b006217876d38f9447fdeaeecd94
MD5 6dc196ebc99198c56871d4bfe7f321c7
BLAKE2b-256 aa4e2ca89f60ec68cddc413aae37d098a9592d827e7edefed06a6ba28f8820e9

See more details on using hashes here.

File details

Details for the file perfplot-0.7.2-py3-none-any.whl.

File metadata

  • Download URL: perfplot-0.7.2-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for perfplot-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1ed1ccb99dce197c0b4c92b4cfd39a2b0bde168a29a5d089f8cb84b150540914
MD5 c7e4aa1c076c40983b50aae8ff44ffdb
BLAKE2b-256 e139ccfee2d031b58a5f46b73a91f138ee37bc1143bffc96b5b26e2b90559c8b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page