Skip to main content

Performance plots for Python code snippets

Project description

perfplot

CircleCI codecov Code style: black PyPI pyversions PyPi Version GitHub stars PyPi downloads

perfplot extends Python's timeit by testing snippets with input parameters (e.g., the size of an array) and plotting the results. (By default, perfplot asserts the equality of the output of all snippets, too.)

For example, to compare different NumPy array concatenation methods, the script

import numpy
import perfplot

perfplot.show(
    setup=lambda n: numpy.random.rand(n),  # or simply setup=numpy.random.rand
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2 ** k for k in range(15)],
    xlabel="len(a)",
    # logx=False,
    # logy=False,
    # More optional arguments with their default values:
    # title=None,
    # logx="auto",  # set to True or False to force scaling
    # logy="auto",
    # equality_check=numpy.allclose,  # set to None to disable "correctness" assertion
    # colors=None,
    # target_time_per_measurement=1.0,
    # time_unit="s",  # set to one of ("auto", "s", "ms", "us", or "ns") to force plot units
    # relative_to=1,  # plot the timings relative to one of the measurements
    # flops=lambda n: 3*n,  # FLOPS plots
)

produces

Clearly, stack and vstack are the best options for large arrays.

Benchmarking and plotting can be separated, too. This allows multiple plots of the same data, for example:

out = perfplot.bench(
    # same arguments as above
    )
out.show()
out.save("perf.png", transparent=True, bbox_inches="tight")

Other examples:

Installation

perfplot is available from the Python Package Index, so simply do

pip install perfplot

to install or upgrade.

Testing

To run the perfplot unit tests, check out this repository and type

pytest

License

This software is published under the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfplot-0.8.0.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

perfplot-0.8.0-py3-none-any.whl (19.1 kB view details)

Uploaded Python 3

File details

Details for the file perfplot-0.8.0.tar.gz.

File metadata

  • Download URL: perfplot-0.8.0.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for perfplot-0.8.0.tar.gz
Algorithm Hash digest
SHA256 3ee9060aab0f8089033a13885b9a779dfd719f24b964ed5a2fa8201b8b920b48
MD5 f4eac3619aa42ee48523e3e7ff20f002
BLAKE2b-256 7148cd853780ae77a05429f112883a95cda5d79cb99ebcd2c49cf56b3ec36cee

See more details on using hashes here.

File details

Details for the file perfplot-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: perfplot-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 19.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for perfplot-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6948582b72d1a06ac264e59325fb3d72caef67480eedfea8382caa4dc87bea72
MD5 809bcb11205c55e3c97959d2fcff38ed
BLAKE2b-256 e0b6d6a1246eb5416a00126b7752538dbfb31fb288a36c69fe516404281317a5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page