Python implementation for Perlin Noise with unlimited coordinates space
Project description
Smooth random noise generator
read more https://en.wikipedia.org/wiki/Perlin_noise
source code: https://github.com/salaxieb/perlin_noise
noise = PerlinNoise(octaves=3.5, seed=777)
octaves : number of sub rectangles in each [0, 1] range
seed : specific seed with which you want to initialize random generator
tile_sizes : tuple of ints of you want to noise seamlessly repeat itself
from perlin_noise import PerlinNoise
noise = PerlinNoise()
# accepts as argument float and/or list[float]
noise(0.5) == noise([0.5])
# --> True
# noise not limited in space dimension and seamless in any space size
noise([0.5, 0.5]) == noise([0.5, 0.5, 0, 0, 0])
# --> True
# noise can seamlessly repeat isself
noise([0.5, 0.5], tile_sizes=[2, 5]) == noise([2.5, 5.5], tile_sizes=[2, 5])
# --> True
Usage examples:
import matplotlib.pyplot as plt
from perlin_noise import PerlinNoise
noise = PerlinNoise(octaves=10, seed=1)
xpix, ypix = 100, 100
pic = [[noise([i/xpix, j/ypix]) for j in range(xpix)] for i in range(ypix)]
plt.imshow(pic, cmap='gray')
plt.show()
import matplotlib.pyplot as plt
from perlin_noise import PerlinNoise
noise1 = PerlinNoise(octaves=3)
noise2 = PerlinNoise(octaves=6)
noise3 = PerlinNoise(octaves=12)
noise4 = PerlinNoise(octaves=24)
xpix, ypix = 100, 100
pic = []
for i in range(xpix):
row = []
for j in range(ypix):
noise_val = noise1([i/xpix, j/ypix])
noise_val += 0.5 * noise2([i/xpix, j/ypix])
noise_val += 0.25 * noise3([i/xpix, j/ypix])
noise_val += 0.125 * noise4([i/xpix, j/ypix])
row.append(noise_val)
pic.append(row)
plt.imshow(pic, cmap='gray')
plt.show()
Library has a possibility to generate repetative random noise with custom tile sizes:
import matplotlib.pyplot as plt
from perlin_noise import PerlinNoise
noise = PerlinNoise(octaves=2, seed=42)
xpix, ypix = 800, 1200
lim_x, lim_y = 6, 9
pic = [
[
noise([lim_x * i / xpix, lim_y * j / ypix], tile_sizes=[2, 3])
for j in range(xpix)
]
for i in range(ypix)
]
plt.imshow(pic, cmap="gray")
plt.show()
import matplotlib.pyplot as plt
from perlin_noise import PerlinNoise
noise1 = PerlinNoise(octaves=1)
noise2 = PerlinNoise(octaves=3)
noise3 = PerlinNoise(octaves=6)
noise4 = PerlinNoise(octaves=12)
xpix, ypix = 800, 1200
lim_x, lim_y = 4, 6
tile_sizes = (2, 3)
pic = []
for i in range(ypix):
row = []
for j in range(xpix):
noise_val = noise1([lim_x * i / xpix, lim_y * j / ypix], tile_sizes)
noise_val += 0.5 * noise2([lim_x * i / xpix, lim_y * j / ypix], tile_sizes)
noise_val += 0.25 * noise3([lim_x * i / xpix, lim_y * j / ypix], tile_sizes)
noise_val += 0.125 * noise4([lim_x * i / xpix, lim_y * j / ypix], tile_sizes)
row.append(noise_val)
pic.append(row)
plt.imshow(pic, cmap="gray")
plt.savefig("pics/multy_noise_tiled.png", transparent=True)
plt.show()
for tiles to work correctly, number of octaves MUST be integer
import matplotlib.pyplot as plt
from perlin_noise import PerlinNoise
noise = PerlinNoise(octaves=2.5, seed=42)
xpix, ypix = 800, 1200
lim_x, lim_y = 6, 9
pic = [
[
noise([lim_x * i / xpix, lim_y * j / ypix], tile_sizes=(2, 3))
for j in range(xpix)
]
for i in range(ypix)
]
plt.imshow(pic, cmap="gray")
plt.savefig('pics/tiled_with_step.png', transparent=True)
plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file perlin_noise-1.13.tar.gz
.
File metadata
- Download URL: perlin_noise-1.13.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e0f074743336fbe9cf2cdbdeb74c75d43780a8b3cbc3415859cd396ab4da177 |
|
MD5 | 493542861756622e5e91ed80aed4bfbf |
|
BLAKE2b-256 | bd1e571287a516c1ef00d2c65316ffa39ce1078510a015fa72c27338e3ecbfff |
File details
Details for the file perlin_noise-1.13-py3-none-any.whl
.
File metadata
- Download URL: perlin_noise-1.13-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09f274c8da38f5a2a48b1626032a1b7738990df758a3bc7549ff3464869c6ca4 |
|
MD5 | da609b1495bff001c7b794fd4955dd63 |
|
BLAKE2b-256 | 4db2c7bd5f926f0e2cf3a4cf21c527f6d1b8f43c84bbfcd5aa32f47c7c14cc89 |