Skip to main content

The supervised learning framework based on perceptron for tabular data.

Project description

perming

perming: Perceptron Models Are Training on Windows Platform with Default GPU Acceleration.

  • p: use polars or pandas to read dataset.
  • per: perceptron algorithm used as based model.
  • m: models concluding regressier and classifier (binary & multiple).
  • ing: training on windows platform with strong gpu acceleration.

init backend

refer to https://pytorch.org/get-started/locally/ and choose the PyTorch that support cuda compatible with your Windows. The current software version only supports Windows system.

test with: PyTorch 1.7.1+cu101

general model

GENERAL_BOX(Box) Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)
device: str="cuda"
*
activation: str="relu"
inplace_on: bool=True
criterion: str="CrossEntropyLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier or Regressier Based on Basic Information of the Dataset Obtained through Data Preprocessing and Feature Engineering.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
data_loader features: TabularData
labels: TabularData
ratio_set: Dict[str, int]={'train': 8, 'test': 1, 'val': 1}
worker_set: Dict[str, int]={'train': 8, 'test': 2, 'val': 1}
random_seed: Optional[int]=None
Using ratio_set and worker_set to Load the Numpy Dataset into torch.utils.data.DataLoader.
train_val num_epochs: int=2
interval: int=100
backend: str="threading"
n_jobs: int=-1
Using num_epochs to Control Training Process and interval to Adjust Print Interval with Accelerated Validation Combined with backend and n_jobs.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.

common models (cuda first)

  • Regression
Regressier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)*

activation: str="relu"
criterion: str="MSELoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Regressier Based on Basic Information of the Regression Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=1.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
train_val num_epochs: int=2
interval: int=100
backend: str="threading"
n_jobs: int=-1
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
test / Test Module Only Show with Loss at 3 Stages: Train, Test, Val
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Binary-classification
Binarier Parameters Meaning
__init__ input_: int
hidden_layer_sizes: Tuple[int]=(100,)*

activation: str="relu"
criterion: str="BCELoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes=2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
train_val num_epochs: int=2
interval: int=100
backend: str="threading"
n_jobs: int=-1
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
test sort_by: str="accuracy"
sort_state: bool=True
Test Module Show with Correct Class and Loss at 3 Stages: Train, Test, Val
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Multi-classification
Multipler Parameters Meaning
__init__ input_: int
num_classes: int
hidden_layer_sizes: Tuple[int]=(100,)*

activation: str="relu"
criterion: str="CrossEntropyLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Classifier Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with num_classes>2.
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
train_val num_epochs: int=2
interval: int=100
backend: str="threading"
n_jobs: int=-1
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.
  • Multi-outputs
Ranker Parameters Meaning
__init__ input_: int
num_outputs: int
hidden_layer_sizes: Tuple[int]=(100,)*

activation: str="relu"
criterion: str="MultiLabelSoftMarginLoss"
solver: str="adam"
batch_size: int=32
learning_rate_init: float=1e-2
lr_scheduler: Optional[str]=None
Initialize Ranker Based on Basic Information of the Classification Dataset Obtained through Data Preprocessing and Feature Engineering with (n_samples, n_outputs).
print_config / Return Initialized Parameters of Multi-layer Perceptron and Graph.
train_val num_epochs: int=2
interval: int=100
backend: str="threading"
n_jobs: int=-1
Using ratio_set and worker_set to Load the Regression Dataset with Numpy format into torch.utils.data.DataLoader.
test sort_by: str="accuracy"
sort_state: bool=True
Sort Returned Test Result about Correct Classes with sort_by and sort_state Which Only Appears in Classification.
save show: bool=True
dir: str='./model'
Save Trained Model Parameters with Model state_dict Control by show.
load show: bool=True
dir: str='./model'
Load Trained Model Parameters with Model state_dict Control by show.

pip install

download latest version:

git clone https://github.com/linjing-lab/easy-pytorch.git
cd easy-pytorch/released_box
pip install -e . --verbose

download stable version:

pip install perming --upgrade

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

perming-1.3.0-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file perming-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: perming-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 13.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.0.0 pkginfo/1.8.2 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.12

File hashes

Hashes for perming-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 548c8072eeffb7a504306c8b0a0ad7f382b637f4921e6c3048b2dd8f3f74c639
MD5 4e0dc7da10b6ff5184bbb82a855a0baa
BLAKE2b-256 cc8866947137d25c9220a1e7ecf50523957b852afc5630720e15d5b6bf141762

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page