A decorator for caching functions that provides persistence to JSON, pickle, or SQLite
Project description
persistent-cache-decorator
Table of Contents
Installation
pip install persistent-cache-decorator
Usage
from __future__ import annotations
import time
from persistent_cache.backend import CacheBackend
from persistent_cache.decorators import json_cache
from persistent_cache.decorators import persistent_cache
@persistent_cache(minutes=4)
def long_func(n: int) -> str:
"""Long Func Documentation."""
# Long function
time.sleep(n)
return f"{n}"
# reveal_type(long_func)
# Runtime type is "_persistent_cache"
# <persistent_cache_decorator._persistent_cache object at 0x10468be50>
# Call function(takes 5 seconds)
long_func(5)
"5"
# Call function again (takes 0 seconds)
long_func(5)
"5"
# Bypass caching(takes 5 seconds)
long_func.no_cache_call(5)
"5"
# Call function again (takes 0 seconds)
long_func(5)
"5"
# Clear cache for this function
long_func.cache_clear()
# Call function(takes 5 seconds)
long_func(5)
Cached Property
from typing import NamedTuple # noqa: E402
from persistent_cache.decorators import json_cached_property # noqa: E402
# To cache instance methods, use the json_cache decorator you can do the following:
# Reference: https://www.youtube.com/watch?v=sVjtp6tGo0g
class Pet:
def __init__(self, name: str, age: int) -> None:
self.name = name
self.age = age
# creating the cache function this way will allow the cache to be cleared using the instance
# It will also only use the arguments as the key
self.online_information = json_cache(days=2)(self._online_information)
def _online_information(self, source: str) -> int:
# Something that takes a long time
return len(source)
pet = Pet("Rex", 5)
pet.online_information(source="https://api.github.com/users/rex")
pet.online_information.cache_clear()
# NEW: or you can use the json_cached_property decorator to cache the result of a method
# This makes use of Python's Descriptors: https://www.youtube.com/watch?v=vBys0SwYvCQ
class Person(NamedTuple):
name: str
age: int
# The decorator works with Namedtuples as well as with classes
@json_cached_property(days=2)
def online_information(self, source: str) -> int:
# Something that takes a long time
return len(source)
person = Person("John", 30)
# The following call will cache the result using the class instance as well as the arguments as the key # noqa: E501
person.online_information(source="https://api.github.com/users/john")
# To clear the cache, use the method from the class directly
Person.online_information.cache_clear()
Creating a custom cache backend
from typing_extensions import Any # noqa: E402
from typing import Callable # noqa: E402
from persistent_cache.decorators import cache_decorator_factory # noqa: E402
from typing import TYPE_CHECKING # noqa: E402
if TYPE_CHECKING:
import datetime
from persistent_cache.decorators import _R
# Define a custom cache backend
class RedisCacheBackend(CacheBackend):
def get_cache_or_call( # type: ignore[empty-body]
self,
*,
func: Callable[..., _R],
args: tuple[Any, ...],
kwargs: dict[str, Any],
lifespan: datetime.timedelta,
) -> _R:
...
def del_func_cache(self, *, func: Callable[..., Any]) -> None:
...
# Singleton Instance
REDIS_CACHE_BACKEND = RedisCacheBackend()
# Quick way of defining a decorator. You can use this if you want multiple decorators with different cache durations. # noqa: E501
redis_cache = cache_decorator_factory(backend=REDIS_CACHE_BACKEND)
@redis_cache(days=1)
def foo(time: float) -> float:
from time import sleep
sleep(time)
return time
License
persistent-cache-decorator
is distributed under the terms of the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file persistent_cache_decorator-0.1.6.tar.gz
.
File metadata
- Download URL: persistent_cache_decorator-0.1.6.tar.gz
- Upload date:
- Size: 14.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9043db56869e995da5463f26ce619f99594c79bc569da273b6421231324582eb |
|
MD5 | 0ff9cd79bcbfd4c50e04b2c7bdc26832 |
|
BLAKE2b-256 | ba7bf381f02da58cf3c6778a7e1c1cc0284e5e6268688973a1f95c83ad5511a3 |
File details
Details for the file persistent_cache_decorator-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: persistent_cache_decorator-0.1.6-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77de0e10068c725f3723f04e127f2df0119be7dfeecc7db373b0f4e5dff774cf |
|
MD5 | 8ee7690df162aa85a73e6483063416c2 |
|
BLAKE2b-256 | c6f3e95c567c4aaccbefde07e05bb8abd62b99a267d9548c5d216d390d55e999 |