Skip to main content

A lightweight Python library for managing dynamic multi-persona interactions with LLMs.

Project description

PersonaFlow

PersonaFlow is a lightweight Python library designed for creating and managing AI personas with dynamic memory capabilities. It enables developers to build interactive characters that can maintain context and remember past interactions.

Installation

pip install -r requirements.txt

Basic Usage

from personaflow.core import PersonaSystem

# Initialize a new persona system
# This is the main controller for managing all characters and their interactions
system = PersonaSystem()

# Create a basic character with minimal configuration
# Here we only specify the essential parameters: name and prompt
basic_character = system.create_character(
    name="BasicAssistant",
    prompt="You are a helpful AI assistant named BasicAssistant"
)

# Let's add a simple interaction to the character's memory
# This stores both the user's input and the character's response
system.add_interaction(
    character_name="BasicAssistant",  # The character receiving the memory
    content={
        "user": "What's your name?",     # User's message
        "response": "I'm BasicAssistant"  # Character's response
    }
)

# Retrieve the character's context including recent memories
# This shows us the character's current state and memory
context = basic_character.get_context()

# Print the context to see what the character knows
print(context)

Examples

An example with an embedded LLM implementation is available in example.py.

Core Features

1. Character Management

# Create a more sophisticated character with full configuration
advanced_character = system.create_character(
    # Unique identifier for the character
    name="TechExpert",
    
    # Base personality and behavior definition
    prompt="You are a technology expert specializing in Python and AI",
    
    # Additional character information and traits
    background={
        "expertise": ["Python", "AI", "Machine Learning"],
        "personality": "Professional but friendly",
        "experience": "10 years in software development"
    },
    
    # Memory system configuration
    memory_config={
        "max_memories": 500,        # Maximum number of memories to store
        "summary_threshold": 50,    # When to start summarizing old memories
        "auto_summarize": True      # Automatically compress old memories
    }
)

# Switch the active character in the system
# This is useful when managing multiple characters
system.switch_active_character("TechExpert")

# Retrieve a specific character from the system
tech_expert = system.get_character("TechExpert")

# Get character context with specific memory filters
context = tech_expert.get_context(
    include_memories=True,    # Include memory in the context
    memory_limit=10,         # Only get the 10 most recent memories
    memory_types=["interaction", "event"]  # Only get specific types of memories
)

2. Memory Management

# Add a standard interaction memory
character.add_memory(
    # The content of the memory - typically a conversation
    content={
        "user": "How can I improve my Python skills?",
        "response": "Practice coding regularly and work on real projects"
    },
    # Type of memory being stored
    memory_type="interaction",
    # Additional information about the memory
    metadata={
        "topic": "programming",
        "importance": "high",
        "engagement": "positive"
    }
)

# Add a system event memory
# This is useful for tracking important system changes or updates
character.add_memory(
    # Record an important event or system change
    content={
        "event": "Knowledge Base Update",
        "details": "Added new programming tutorials and resources"
    },
    memory_type="event",
    metadata={
        "category": "system_update",
        "impact": "significant"
    }
)

# Broadcast an announcement to all characters
# Useful for system-wide notifications or shared knowledge
system.broadcast_interaction(
    # Content that all characters should remember
    content={
        "announcement": "New Feature Release",
        "details": "Added support for code execution"
    },
    # Specify this as a broadcast type memory
    memory_type="broadcast",
    # Additional context about the broadcast
    metadata={
        "priority": "high",
        "requires_action": False
    }
)

# Retrieve specific memories with filters
# This helps in getting relevant context for responses
recent_memories = character.memory_manager.get_memories(
    limit=5,                         # Only get 5 memories
    memory_types=["interaction"]     # Only get conversation memories
)

# Example of memory configuration for advanced use cases
memory_config = {
    # Set maximum number of memories before triggering cleanup
    "max_memories": 2000,
    
    # Number of memories that trigger summarization
    "summary_threshold": 100,
    
    # Enable automatic memory summarization
    "auto_summarize": True
}

# Create character with advanced memory configuration
advanced_memory_character = system.create_character(
    name="MemoryExpert",
    prompt="AI with enhanced memory capabilities",
    memory_config=memory_config
)

# Add a complex memory with detailed metadata
advanced_memory_character.add_memory(
    # Detailed conversation content
    content={
        "user": "Tell me about our previous discussion on AI",
        "response": "We covered neural networks and deep learning",
        "context": {
            "previous_topics": ["Machine Learning", "Neural Networks"],
            "user_knowledge_level": "intermediate"
        }
    },
    memory_type="interaction",
    # Rich metadata for better context retrieval
    metadata={
        "conversation_id": "12345",
        "topics": ["AI", "deep learning"],
        "importance_score": 0.8,
        "user_engagement": "high",
        "follow_up_required": True
    }
)

3. Prompt Management

from personaflow.utils import PromptManager

# Initialize the prompt manager
# This helps maintain consistent character responses through templates
prompt_manager = PromptManager()

# Add a basic greeting template
# ${variable_name} syntax is used for dynamic content
prompt_manager.add_template(
    "greeting",
    """
    Hello ${user_name}! 
    I'm ${bot_name}, ${role}. 
    ${custom_greeting}
    """
)

# Add a more complex template for technical responses
prompt_manager.add_template(
    "technical_response",
    """
    Regarding your question about ${topic}:
    
    Based on my ${expertise} background, here's a detailed explanation:
    ${explanation}
    
    Technical details:
    ${technical_details}
    
    Would you like me to elaborate on any specific aspect?
    """
)

# Using the templates with specific values
basic_greeting = prompt_manager.get_prompt(
    "greeting",
    # Fill in template variables
    user_name="Alice",
    bot_name="TechBot",
    role="your technical advisor",
    custom_greeting="How can I help with your technical questions today?"
)

technical_answer = prompt_manager.get_prompt(
    "technical_response",
    # Provide detailed technical content
    topic="Python Decorators",
    expertise="Python development",
    explanation="Decorators are a way to modify function behavior",
    technical_details="""
    1. They use the @syntax
    2. Common use cases include logging and authentication
    3. They can be stacked on a single function
    """
)

4. Logging System

from personaflow.utils import Logger

# Initialize logger with both console and file output
# This helps track system operations and debug issues
logger = Logger(
    name="PersonaFlow",           # Logger identifier
    level="INFO",                 # Logging level
    log_file="persona_flow.log"   # Output file for logs
)

# Example of different logging levels for various situations
# Info for general operational messages
logger.info("Successfully created new character: TechBot")

# Debug for detailed technical information
logger.debug("Processing memory retrieval request for character: TechBot")

# Warning for potential issues
logger.warning("Character memory approaching configured limit (90% full)")

# Error for serious issues that need attention
logger.error("Failed to load character state from file: character_backup.json")

5. Serialization

from personaflow.utils import Serializer

# Save the entire system state
# Useful for backing up or transferring the system
system_data = system.to_dict()
Serializer.to_json(
    # Convert system state to JSON format
    data=system_data,
    file_path="system_backup.json"  # Where to save the backup
)

# Load a previously saved system state
# Restore system from backup
loaded_data = Serializer.from_json("system_backup.json")
restored_system = PersonaSystem.from_dict(loaded_data)

# Save individual character state
# Useful for character-specific backups
character_data = character.to_dict()
Serializer.to_json(
    data=character_data,
    file_path="character_backup.json"
)

# Example of saving specific character memories
memory_backup = {
    "character_name": character.name,
    "memories": character.memory_manager.get_memories(),
    "timestamp": "2024-03-21T10:00:00"
}
Serializer.to_json(
    data=memory_backup,
    file_path="memories_backup.json"
)

6. Input Validation

from personaflow.utils import validators

# Validate a prompt template
# Ensures the template syntax is correct before using it
template = "Hello ${name}, welcome to ${service}!"
is_valid = validators.validate_prompt_template(template)

if is_valid:
    # Template is valid, safe to use
    prompt_manager.add_template("welcome", template)
else:
    # Template has syntax errors
    logger.error(f"Invalid template syntax: {template}")

# Validate memory content structure
# Ensures memory content meets required format
memory_content = {
    "user": "What's the weather like?",
    "response": "I don't have access to weather data."
}

# Check if content structure is valid
if validators.validate_memory_content(memory_content):
    # Content is valid, safe to add to memory
    character.add_memory(content=memory_content)
else:
    # Content is missing required fields
    logger.error("Invalid memory content structure")

# Validate memory configuration
# Ensures memory settings are properly formatted
memory_config = {
    "max_memories": 1000,
    "summary_threshold": 10,
    "auto_summarize": True
}

# Check if configuration is valid
if validators.validate_memory_config(memory_config):
    # Configuration is valid, safe to use
    character = system.create_character(
        name="ValidatedChar",
        prompt="Basic prompt",
        memory_config=memory_config
    )
else:
    # Configuration has invalid values or missing fields
    logger.error("Invalid memory configuration")

7. Complete System Example

from personaflow.core import PersonaSystem
from personaflow.utils import PromptManager, Logger, Serializer

# Initialize all system components
# Set up the main system and utilities
system = PersonaSystem()
prompt_manager = PromptManager()
logger = Logger("PersonaSystem", log_file="system.log")

# Create prompt templates for the character
# Define various response patterns
prompt_manager.add_template(
    "tech_assistant",
    """
    You are ${name}, an AI assistant with the following traits:
    - Primary expertise: ${expertise}
    - Background: ${background}
    - Current context: ${context}
    
    Please provide assistance while maintaining these characteristics.
    """
)

# Create a character with complete configuration
tech_assistant = system.create_character(
    # Basic character information
    name="TechHelper",
    
    # Generate character prompt from template
    prompt=prompt_manager.get_prompt(
        "tech_assistant",
        name="TechHelper",
        expertise="Python & AI Development",
        background="10 years of software development",
        context="Initial setup"
    ),
    
    # Detailed background information
    background={
        "skills": ["Python", "AI", "Machine Learning", "Software Architecture"],
        "personality_traits": ["Patient", "Detail-oriented", "Analytical"],
        "communication_style": "Professional but friendly",
        "specializations": {
            "primary": "Python Development",
            "secondary": ["AI Systems", "Code Optimization"]
        }
    },
    
    # Memory system configuration
    memory_config={
        "max_memories": 1000,
        "summary_threshold": 50,
        "auto_summarize": True
    }
)

# Simulate a conversation with memory tracking
# First user interaction
system.add_interaction(
    character_name="TechHelper",
    content={
        "user": "Can you help me understand Python decorators?",
        "response": "I'd be happy to explain decorators. They're a powerful Python feature..."
    },
    metadata={
        "topic": "Python",
        "subtopic": "decorators",
        "complexity": "intermediate"
    }
)

# Follow-up interaction
system.add_interaction(
    character_name="TechHelper",
    content={
        "user": "Can you show me an example?",
        "response": "Here's a simple decorator example:\n\n@timer\ndef my_function()..."
    },
    metadata={
        "topic": "Python",
        "subtopic": "decorators",
        "content_type": "code_example"
    }
)

# Get updated context for next interaction
context = tech_assistant.get_context(
    include_memories=True,
    memory_limit=5
)

# Save system state periodically
try:
    Serializer.to_json(system.to_dict(), "system_state.json")
    logger.info("System state saved successfully")
except IOError as e:
    logger.error(f"Failed to save system state: {str(e)}")

# Example of processing user request with full context
def process_user_request(user_input: str, character_name: str):
    """
    Process a user request with full context and memory
    """
    # Get the character
    character = system.get_character(character_name)
    
    # Get relevant context
    context = character.get_context(
        include_memories=True,
        memory_limit=5,
        memory_types=["interaction"]
    )
    
    # Log the interaction
    logger.info(f"Processing request for {character_name}: {user_input[:50]}...")
    
    # Add the new interaction
    system.add_interaction(
        character_name=character_name,
        content={
            "user": user_input,
            "response": "Generated response based on context..."
        },
        metadata={
            "timestamp": "2024-03-21T10:00:00",
            "session_id": "unique_session_id"
        }
    )

    return "Generated response based on context..."

# Example usage of the process_user_request function
response = process_user_request(
    user_input="How do I optimize my Python code?",
    character_name="TechHelper"
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

personaflow-0.1.2.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

personaflow-0.1.2-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file personaflow-0.1.2.tar.gz.

File metadata

  • Download URL: personaflow-0.1.2.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for personaflow-0.1.2.tar.gz
Algorithm Hash digest
SHA256 7511444833472541f2146b5bd758f00a3363dd2dfe89ca331b1ebe9b016b0469
MD5 f71b53f87dd4eb58bec77cc96d0b52f3
BLAKE2b-256 64d6049e8c5a5b7e7438e7cec7e9d3996e37160d5b011d70a0d77f1e18d0252a

See more details on using hashes here.

File details

Details for the file personaflow-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: personaflow-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for personaflow-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a72bd2697dcf62a114e64ef2ad6f350f4e7f75bd966738f587a107ab29a3de26
MD5 575525ffd9d95936dbb2a6af515c4775
BLAKE2b-256 2b08aef8f1066cc165beaa3b86acaec8587ae23079b7d9383cc4754220552cc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page