Skip to main content

Extracting directed emotions at scale with LMs

Project description

Perspectives: Pandas-based library for emotion graphing and semantic search with LMs

Overview

The Perspectives library offers an easy way to extract perspectives (emotion events with a speaker, emotion, object, and reason) at scale with its cutting-edge emotion extraction model. It is built on top of the powerful pandas DataFrame functionality, with added support for semantic search. The library introduces several novel methods for text analytics, perfect for dealing with customer feedback, analyzing semantic trends, or profiling entities within a text. image Graph generated from extracted perspectives

image Semantic search dashboard built on top of pandas

Main Features

  1. Easily extract perspectives from text: The get_perspectives() function allows you to extract the speaker's identity, emotions, and the object of these emotions, giving you useful insights about the emotions in your text.

  2. Powerful search capabilities: You can perform semantic search on the dataset based on any column or combination of columns in the dataset (including columns generated from perspective extraction) . The search method leverages the sentence transformer models for semantic search functionality, providing you with outputs that are spot-on.

  3. Improved machine learning models: The library efficiently interfaces with specialized model bart-perspectives for extraction and the mpnet-base model for search.

  4. Structured emotional outcomes: All outputs are neatly structured in DataFrame format, allowing for easy downstream analysis and visualizations.

Installation

pip install perspectives

Usage

from perspectives import DataFrame

# Load DataFrame
df = DataFrame(texts = [list of sentences]) 

# Get perspectives
df.get_perspectives()

# Semantic search on any combination of columns
df.search(speaker='...', emotion='...')

# Profile
df.graph(speaker='...')

Demo

Video demo

Colab demo for profiling

Colab demo for analyzing customer reviews

About me

I'm a recent grad of Ohio State University where I did an undergraduate thesis on Synthetic Data Augmentation using LLMs. I've worked as an NLP consultant for a couple awesome startups, and now I'm looking for a role with an inspiring company who is as interested in the untapped potential of LMs as I am! Here's my LinkedIn.

Contributing and Support

Contributions are welcome! Please raise a GitHub issue for any problems you encounter.

Buy me a coffee!

Licence

The library is open source, free to use under the MIT license.

Please note that this library is still under active development, hence you may see regular updates and improvements. Feel free to contribute!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perspectives-1.0.8.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

perspectives-1.0.8-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file perspectives-1.0.8.tar.gz.

File metadata

  • Download URL: perspectives-1.0.8.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for perspectives-1.0.8.tar.gz
Algorithm Hash digest
SHA256 daf6caa032a1f05347c0900fe0d95db5ff37a9426d85d6ab3b599516dd7020a2
MD5 006d5ac1523fcb222341954e2f5fc501
BLAKE2b-256 ddfdf6657c98bea2b053dac56d44f22be0dcdc6424922b3d5b7134528487e0ba

See more details on using hashes here.

File details

Details for the file perspectives-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: perspectives-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for perspectives-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 d8d9aff4c8dde355cdf3f7f394e341f666bf84c2c04e3aff94bdd429e65453aa
MD5 006c691db7f970ed0963c136c1d7edcb
BLAKE2b-256 7530109d56f4bf405cdfae67a483daf672517837afcd462e24ccc5d60537bfa5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page