Implementation of Minibox and Delauany edges algorithms.
Project description
persty
- Minibox and Delaunay Edges Algorithms
This package provides an implementation of algorithms for finding the Minibox and Delaunay edges on a finite set of points in d-dimensional space with Chebysehv distance.
Installation
This package requires setuptools
and numpy
.
To use the functionality of the persty.util
submodule also gudhi
needs to
be installed. See Computing Persistent Homology section below.
Install it with
>>> pip install git+https://github.com/gbeltramo/persty.git
Usage
import numpy as np
import persty.minibox
import persty.delaunay
np.random.seed(0)
points = np.random.rand(20, 2).tolist()
minibox_edges = persty.minibox.edges(points)
delaunay_edges = persty.delaunay.edges(points)
Computing Persistent Homology
Minibox and Delaunay edges can be used to compute persistent homology in homological dimensions zero and one.
The pesty
package provides a wrapper function to generate a gudhi.SimplexTree()
object that can be used to compute persistence diagrams of Minibox and Alpha Clique
filtrations.
The gudhi
package must be installed. If you installed conda
this can be obtained by running the following command in a
terminal window.
>>> conda install -c conda-forge gudhi
The following code computes the zero and one dimensional persistence diagrams of 1000 randomly sample points in the unit cube in $5$ dimensional space.
import numpy as np
import persty.minibox
import persty.util
from scipy.spatial.distance import chebyshev
np.random.seed(0)
points = np.random.rand(100, 3).tolist()
minibox_edges = persty.minibox.edges(points)
simplex_tree = persty.util.make_gudhi_simplex_tree(points,
minibox_edges,
max_simplex_dim=2,
metric=chebyshev)
persistence_diagrams = simplex_tree.persistence(homology_coeff_field=2,
persistence_dim_max=False)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file persty-0.2.2.tar.gz
.
File metadata
- Download URL: persty-0.2.2.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3832d634797c03c3433cf0f4f058edfaf2e3b61e2f22a7d8adfc84ab12354f8b |
|
MD5 | fdaeaa530b86efb9cd1a846448bcdbed |
|
BLAKE2b-256 | 3de961d1e62a2227f868b635ccc39c018b19f758bdcd1cd945c1447e6c8913b7 |
File details
Details for the file persty-0.2.2-py3.7-win-amd64.egg
.
File metadata
- Download URL: persty-0.2.2-py3.7-win-amd64.egg
- Upload date:
- Size: 20.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 84f0f70355a2b8b1c1b59566425c25e32360eacad449f9be70898c59e4d1379d |
|
MD5 | af04065152df6c1ba1e4470e5d53aeb9 |
|
BLAKE2b-256 | c52c42ff43287f70e9886371649aacc649c4e892750691d5afec23a46c6555b0 |
File details
Details for the file persty-0.2.2-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: persty-0.2.2-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 29.3 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5faedacf4673f272debc6c32a3259f245ad42ddbecff666f1059f71124c0e920 |
|
MD5 | a5acd0e1054ca0d9b52a31095d6c3dc8 |
|
BLAKE2b-256 | 52c55490b0aa9bd46e0c21973900314b939b208b2df47e96f20adad9b62b6077 |