Measure the energy used by your MPI+Python applications.
Project description
perun is a Python package that calculates the energy consumption of Python scripts by sampling usage statistics from your Intel, Nvidia or AMD hardware components. It can handle MPI applications, gather data from hundreds of nodes, and accumulate it efficiently. perun can be used as a command-line tool or as a function decorator in Python scripts.
Check out the docs or a working example!
Key Features
Measures energy consumption of Python scripts and binaries, supporting different hardware configurations
Capable of handling MPI applications, gathering data from hundreds of nodes efficiently
Monitor individual functions using decorators
Tracks energy usage of the application over multiple executions
Easy to benchmark applications and functions
Experimental!: Can monitor any non-distributed command line application
Quick Start
Installation
From PyPI:
$ pip install perun
Extra dependencies like nvidia-smi, rocm-smi and mpi4py can be installed using pip as well:
$ pip install perun[nvidia, rocm, mpi]
From Github:
$ pip install git+https://github.com/Helmholtz-AI-Energy/perun
Command Line
To use perun as a command-line tool:
$ perun monitor path/to/your/script.py [args]
perun will output two files, an HDF5 style containing all the raw data that was gathered, and a text file with a summary of the results.
PERUN REPORT
App name: finetune_qa_accelerate
First run: 2023-08-15T18:56:11.202060
Last run: 2023-08-17T13:29:29.969779
RUN ID: 2023-08-17T13:29:29.969779
+-----------+------------------------+-----------+-------------+--------------+-------------+-------------+-------------+---------------+-------------+
| Round # | Host | RUNTIME | ENERGY | CPU_POWER | CPU_UTIL | GPU_POWER | GPU_MEM | DRAM_POWER | MEM_UTIL |
+===========+========================+===========+=============+==============+=============+=============+=============+===============+=============+
| 0 | hkn0432.localdomain | 995.967 s | 960.506 kJ | 231.819 W | 3.240 % | 702.327 W | 55.258 GB | 29.315 W | 0.062 % |
| 0 | hkn0436.localdomain | 994.847 s | 960.469 kJ | 235.162 W | 3.239 % | 701.588 W | 56.934 GB | 27.830 W | 0.061 % |
| 0 | All | 995.967 s | 1.921 MJ | 466.981 W | 3.240 % | 1.404 kW | 112.192 GB | 57.145 W | 0.061 % |
The application has been run 7 times. In total, it has used 3.128 kWh, released a total of 1.307 kgCO2e into the atmosphere, and you paid 1.02 € in electricity for it.
Binary support (experimental)
perun is capable of monitoring simple applications written in other languages:
$ perun monitor --binary path/to/your/executable [args]
Function Monitoring
Using a function decorator
import time
from perun import monitor
@monitor()
def main(n: int):
time.sleep(n)
After running with perun monitor, the report will contain:
Monitored Functions
+-----------+----------------------------+---------------------+------------------+--------------------+------------------+-----------------------+
| Round # | Function | Avg Calls / Rank | Avg Runtime | Avg Power | Avg CPU Util | Avg GPU Mem Util |
+===========+============================+=====================+==================+====================+==================+=======================+
| 0 | main | 1 | 993.323±0.587 s | 964.732±0.499 W | 3.244±0.003 % | 35.091±0.526 % |
| 0 | prepare_train_features | 88 | 0.383±0.048 s | 262.305±19.251 W | 4.541±0.320 % | 3.937±0.013 % |
| 0 | prepare_validation_features| 11 | 0.372±0.079 s | 272.161±19.404 W | 4.524±0.225 % | 4.490±0.907 % |
MPI
perun is compatible with MPI applications using mpi4py:
$ mpirun -n 8 perun monitor path/to/your/script.py
Docs
See the documentation or examples for more details.
Citing perun
If you found perun useful, please cite the conference paper:
Gutiérrez Hermosillo Muriedas, J.P., Flügel, K., Debus, C., Obermaier, H., Streit, A., Götz, M.: perun: Benchmarking Energy Consumption of High-Performance Computing Applications. In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., and Sakellariou, R. (eds.) Euro-Par 2023: Parallel Processing. pp. 17–31. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-39698-4_2
@InProceedings{10.1007/978-3-031-39698-4_2,
author="Guti{\'e}rrez Hermosillo Muriedas, Juan Pedro
and Fl{\"u}gel, Katharina
and Debus, Charlotte
and Obermaier, Holger
and Streit, Achim
and G{\"o}tz, Markus",
editor="Cano, Jos{\'e}
and Dikaiakos, Marios D.
and Papadopoulos, George A.
and Peric{\`a}s, Miquel
and Sakellariou, Rizos",
title="perun: Benchmarking Energy Consumption of High-Performance Computing Applications",
booktitle="Euro-Par 2023: Parallel Processing",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="17--31",
isbn="978-3-031-39698-4"
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file perun-0.9.1.tar.gz.
File metadata
- Download URL: perun-0.9.1.tar.gz
- Upload date:
- Size: 202.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6a95b77e70e7b22829da755e58ec3e4d585ab7e9c364113d4a46b1cde1138280
|
|
| MD5 |
dc3e79f83e2fe0299ca2a012c645ffb4
|
|
| BLAKE2b-256 |
58742d3c55e26e28110e896210af1f372920b29aab233ceb2dc12bb2769c79ba
|
Provenance
The following attestation bundles were made for perun-0.9.1.tar.gz:
Publisher:
release.yaml on Helmholtz-AI-Energy/perun
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
perun-0.9.1.tar.gz -
Subject digest:
6a95b77e70e7b22829da755e58ec3e4d585ab7e9c364113d4a46b1cde1138280 - Sigstore transparency entry: 788137082
- Sigstore integration time:
-
Permalink:
Helmholtz-AI-Energy/perun@02f60cef2774277b5d2522cf01fd293ef22e1535 -
Branch / Tag:
refs/tags/v0.9.1 - Owner: https://github.com/Helmholtz-AI-Energy
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
release.yaml@02f60cef2774277b5d2522cf01fd293ef22e1535 -
Trigger Event:
push
-
Statement type:
File details
Details for the file perun-0.9.1-py3-none-any.whl.
File metadata
- Download URL: perun-0.9.1-py3-none-any.whl
- Upload date:
- Size: 63.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8835e89dab8fcd0cd5279bb1ada76d5c1a4cb92f7c96936d3382c6dc4879345c
|
|
| MD5 |
89cc6d8b2dc694b44545dd865de23a72
|
|
| BLAKE2b-256 |
5093ca785c01cc82f98424e8afa191de5b858df85f7a314fbafa6774e085b908
|
Provenance
The following attestation bundles were made for perun-0.9.1-py3-none-any.whl:
Publisher:
release.yaml on Helmholtz-AI-Energy/perun
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
perun-0.9.1-py3-none-any.whl -
Subject digest:
8835e89dab8fcd0cd5279bb1ada76d5c1a4cb92f7c96936d3382c6dc4879345c - Sigstore transparency entry: 788137085
- Sigstore integration time:
-
Permalink:
Helmholtz-AI-Energy/perun@02f60cef2774277b5d2522cf01fd293ef22e1535 -
Branch / Tag:
refs/tags/v0.9.1 - Owner: https://github.com/Helmholtz-AI-Energy
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
release.yaml@02f60cef2774277b5d2522cf01fd293ef22e1535 -
Trigger Event:
push
-
Statement type: