Skip to main content

A nipype PET and MR defacing pipeline for BIDS datasets utilizing FreeSurfer's MiDeFace.

Project description

petdeface

A nipype implementation of an anatomical MR and PET defacing pipeline for BIDS datasets. This is a working prototype, in active development denoted by the 0.x.x version number. However, it is functional and can be used to deface PET and MR data as well as co-register the two modalities. Use is encouraged and feedback via Github issues or email to openneuropet@gmail.com is more than welcome. As is often the case, this medical research software is constrained to testing on data that its developers have access to.

This software can be installed via source or via pip from PyPi with pip install petdeface


CI Status
docker build . -t petdeface docker_build
docker push docker push icon

Requirements

Non-Python Dependencies

Python Dependencies

for a full list of dependencies see the pyproject.toml in this repo

Usage

NOTE: This project is currently in beta release, some features listed below may not be available for version numbers < 1.0.0

usage: petdeface.py [-h] [--output_dir OUTPUT_DIR] [--anat_only]
       [--subject SUBJECT] [--session SESSION] [--docker]
       [--n_procs N_PROCS] [--skip_bids_validator] [--version]
       [--placement PLACEMENT] [--remove_existing] input_dir

PetDeface

positional arguments:
  input_dir             The directory with the input dataset

options:
  -h, --help            show this help message and exit
  --output_dir OUTPUT_DIR, -o OUTPUT_DIR
                        The directory where the output files should be stored
  --anat_only, -a       Only deface anatomical images
  --subject SUBJECT, -s SUBJECT
                        The label of the subject to be processed.
  --session SESSION, -ses SESSION
                        The label of the session to be processed.
  --docker, -d          Run in docker container
  --n_procs N_PROCS     Number of processors to use when running the workflow
  --skip_bids_validator
  --version, -v         show programs version number and exit
  --placement PLACEMENT, -p PLACEMENT
                        Where to place the defaced images. Options are
                        'adjacent': next to the input_dir (default) in a folder appended with _defaced
                        'inplace': defaces the dataset in place, e.g. replaces faced PET and T1w images
                        w/ defaced at input_dir
                        'derivatives': does all of the defacing within the derivatives folder in input_dir.
  --remove_existing, -r Remove existing output files in output_dir.

Working example usage:

petdeface /inputfolder --output_dir /outputfolder --n_procs 16 --skip_bids_validator --placement adjacent

Docker Usage

Requirements:

  • Docker must be installed and access to docker run must be available to the current user
  • openneuropet/petdeface must be present or reachable at dockerhub from the machine the cli is installed at, e.g. docker pull openneuropet/petdeface must work
  • if one is unable to pull the image on can build locally with make dockerbuild

NOTE: The docker image for petdeface is not intended to be used by itself, but instead accessed via the petdeface command line written in Python.

Appending the --docker after including all of the required arguments for petdeface will automatically launch the dockerized version of this application, no additional input after that is required.

Running directly with Docker, no Python, no installation:

If you run without using the CLI you will need to:

  • bind the input and output volumes to the container
  • bind a freesurfer license to the container at /opt/freesurfer/license.txt
  • provide all of the arguments you would normally need to provide to the Python CLI
  • provide $UID and $GID if running on linux so that your output isn't written as root, you may disregard this if you're handy.

An example of the command generated from the Python cli to run the docker based version can be seen below:

docker run --user=$UID:$GID -a stderr -a stdout --rm \
-v /Data/faced_pet_data/:/input \
-v /Data/defaced_pet_data/:/output \
-v /home/freesurfer/license.txt:/opt/freesurfer/license.txt \
--platform linux/amd64 \
petdeface:latest  /input --output_dir /output --n_procs 16 --skip_bids_validator  --placement adjacent --user=$UID:$GID system_platform=Linux

Development

This project uses poetry to package and build, to create a pip installable version of the package run:

git clone https://github.com/openneuropet/petdeface.git
cd petdeface
poetry build
pip install dist/petdeface-<X.X.X>-py3-none-any.whl # where X.X.X is the version number of the generated file

Then install the tar or wheel file created in dist:

pip install petdeface-<X.X.X>-py3-none-any.whl # where X.X.X is the version number of the generated file

Citations

  1. Dale A, Fischl B, Sereno MI. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. Neuroimage. 1999;9(2):179–94. doi:10.1006/nimg.1998.0395.
  2. Fischl B. FreeSurfer. Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10. PMID: 22248573; PMCID: PMC3685476.
  3. Stefano Cerri, Douglas N. Greve, Andrew Hoopes, Henrik Lundell, Hartwig R. Siebner, Mark Mühlau, Koen Van Leemput, An open-source tool for longitudinal whole-brain and white matter lesion segmentation, NeuroImage: Clinical, Volume 38, 2023, 103354, ISSN 2213-1582, https://doi.org/10.1016/j.nicl.2023.103354. (https://www.sciencedirect.com/science/article/pii/S2213158223000438)
  4. Gorgolewski, Krzysztof J. ; Esteban, Oscar ; Burns, Christopher ; Ziegler, Erik ; Pinsard, Basile ; Madison, Cindee ; Waskom, Michael ; Ellis, David Gage ; Clark, Dav ; Dayan, Michael ; Manhães-Savio, Alexandre ; Notter, Michael Philipp ; Johnson, Hans ; Dewey, Blake E ; Halchenko, Yaroslav O. ; Hamalainen, Carlo ; Keshavan, Anisha ; Clark, Daniel ; Huntenburg, Julia M. ; Hanke, Michael ; Nichols, B. Nolan ; Wassermann , Demian ; Eshaghi, Arman ; Markiewicz, Christopher ; Varoquaux, Gael ; Acland, Benjamin ; Forbes, Jessica ; Rokem, Ariel ; Kong, Xiang-Zhen ; Gramfort, Alexandre ; Kleesiek, Jens ; Schaefer, Alexander ; Sikka, Sharad ; Perez-Guevara, Martin Felipe ; Glatard, Tristan ; Iqbal, Shariq ; Liu, Siqi ; Welch, David ; Sharp, Paul ; Warner, Joshua ; Kastman, Erik ; Lampe, Leonie ; Perkins, L. Nathan ; Craddock, R. Cameron ; Küttner, René ; Bielievtsov, Dmytro ; Geisler, Daniel ; Gerhard, Stephan ; Liem, Franziskus ; Linkersdörfer, Janosch ; Margulies, Daniel S. ; Andberg, Sami Kristian ; Stadler, Jörg ; Steele, Christopher John ; Broderick, William ; Cooper, Gavin ; Floren, Andrew ; Huang, Lijie ; Gonzalez, Ivan ; McNamee, Daniel ; Papadopoulos Orfanos, Dimitri ; Pellman, John ; Triplett, William ; Ghosh, Satrajit (2016). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. 0.12.0-rc1. Zenodo. 10.5281/zenodo.50186

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

petdeface-0.1.1.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

petdeface-0.1.1-py3-none-any.whl (21.4 kB view details)

Uploaded Python 3

File details

Details for the file petdeface-0.1.1.tar.gz.

File metadata

  • Download URL: petdeface-0.1.1.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/4.18.0-477.27.1.el8_8.x86_64

File hashes

Hashes for petdeface-0.1.1.tar.gz
Algorithm Hash digest
SHA256 669b66db06fefe6735cbcc6b1997a5e7bfe68183cb77d0e0d3935d989459ba26
MD5 e27fc8ccc43e97eec69fd868a93948fe
BLAKE2b-256 aaa0420bbca420c92c5b90c7ad9ae362a1af697ad4a071f7eb6690d9dfefa8fd

See more details on using hashes here.

File details

Details for the file petdeface-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: petdeface-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 21.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/4.18.0-477.27.1.el8_8.x86_64

File hashes

Hashes for petdeface-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e4eccdf34bc714ec7fa148d879b5029bdac0131b8ca996329e85c395c745a026
MD5 b8425c7c4490c3d1b4dbd69e6d11aabc
BLAKE2b-256 3f390d0530b04ef04125e8847b436b74ebf01d491f4ebd6258602f42ccb048ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page