Skip to main content

Python facial landmarking and analysis

Project description

pfla: Python Facial Landmark Analysis
=====================================

[![PyPI license](https://img.shields.io/pypi/l/pfla.svg)](https://pypi.org/project/pfla/)
[![PyPI version fury.io](https://badge.fury.io/py/pfla.svg)](https://pypi.org/project/pfla/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/pfla.svg)](https://pypi.org/project/pfla/)
[![Read the Docs](https://img.shields.io/readthedocs/pip.svg)](https://pfla.readthedocs.io/en/latest/index.html#)
[![Build Status](https://travis-ci.org/maxrousseau/pfla.svg?branch=master)](https://travis-ci.org/maxrousseau/pfla)


Advances in artificial intelligence have enhanced the usability of these
technologies in a clinical setting. This python package introduces the use of a
Detection Outline Analysis (DOA) methodology for facial analysis in
dentistry. This package uses [Haar cascades](https://github.com/opencv/opencv/tree/master/data/haarcascades) for face detection, a trained
68-facial-landmark model and statistical shape analysis ([300 Faces In-The-Wild](https://ibug.doc.ic.ac.uk/resources/300-W/)). The software
uses an R script to conduct statistical [shape](https://cran.r-project.org/web/packages/shapes/index.html) analysis through a
generalized Procrustes analysis (GPA), principal component analysis
(PCA) and non-parametric Goodall test, which compares mean shapes of
each group for significance. The script also computes mean Euclidean
distance from a baseline shape for each landmark.

This package was written to conduct automated facial analyses of patients
affected by Osteogenesis Imperfecta and controls under the BBDC 7701 study. Its
use may also be extended to the study of other dental and/or craniofacial
conditions or to compare different study groups while examining variables such
as sex, ethnicity, etc.

If you use this program or a modified version of it for research purposes please cite as follows:

@mybibtexref{

: title author year journal

}

Features
--------

- Takes 2 directories as input containing .jpg (anteroposterior
clinical photographs)
- Image Processing: scales images, transformation to grayscale
- Detection: haar cascade face bounding, 68 facial landmark placement
- Statistical Shape Analysis: GPA, PCA, Goodall's F-test, Euclidean
distance per landmark from baseline shape

Requirements and Dependencies
-----------------------------

- Python 3.5
- Python packages: opencv-python, dlib, imutils, numpy, argparse, pandas, rpy2, progress
- Linux operating system
- R 3.3 (or more recent)
- R packages: shapes, foreach

Installation
------------

```shell
$ pip install pfla
```


Additionnal steps, the 68 landmark dat file is too large for pip packaging.
You can download it [here](pfla/data/shape_predictor_68_face_landmarks.dat).


Place the downloaded dat file in the following directory:

```shell
$ ~/.local/lib/python3.5/site-packages/pfla/data/
```

Usage
-----

The program is run through the terminal as follows:

```shell
$ pfla -g1 /path/to/first/group -g2 /path/to/second/group
```

The resulting output from the analysis will be printed out into the
terminal like so:

```shell
[ INFO:0] Initialize OpenCL runtime...
Processing Images |###############################| 68/68
g1 processing completed without errors
Processing Images |###############################| 32/32
g2 processing completed without errors

*Bootstrap - sampling with replacement within each group under H0: No of resamples = 10
******************************
null device
1
[1] --------------------------------------------------------------------------------
[1] Goodall Statistical Test P-Value: 0.0909090909090909
[1] --------------------------------------------------------------------------------
[1] Summary of Mean Euclidean Distance:
[1] Group 1:
[1] Mean: 0.0049944135958874 | Standard Deviation: 0.00156292696370281
[1] Group 2:
[1] Mean: 0.00590442732720643 | Standard Deviation: 0.0018474508985488
[1] --------------------------------------------------------------------------------
```

A histogram summarizing the mean Euclidean distances per landmark will
also be save in the data/ directory.

![Mean Euclidean Distance Histogram](paper/histo_02.png)

Testing
-------

To test your installation run the following commands:
```shell
cd ~/.local/lib/python3.5/site-packages/pfla/
python3 test.py
```
Documentation
-------------

Documentation of the package can be found here: <https://pfla.readthedocs.io/en/latest/index.html#>

Contribute
----------

- Issue Tracker: <https://github.com/maxrousseau/pfla/issues>
- Source Code: <https://github.com/maxrousseau/pfla>

License
-------

The project is licensed under the MIT license.

Contact
-------

Maxime Rousseau, DMD II McGill University, Faculty of Dentistry
- Email: <maximerousseau08@gmail.com>



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pfla-0.1.5.tar.gz (147.3 kB view details)

Uploaded Source

Built Distribution

pfla-0.1.5-py3-none-any.whl (405.0 kB view details)

Uploaded Python 3

File details

Details for the file pfla-0.1.5.tar.gz.

File metadata

  • Download URL: pfla-0.1.5.tar.gz
  • Upload date:
  • Size: 147.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pfla-0.1.5.tar.gz
Algorithm Hash digest
SHA256 6d97f4cf15a83e642e8255da00517f5a17117fc3cdc5628271a72e6ae34af118
MD5 f7b0665ca1dc342c0e3ae00ef61cd712
BLAKE2b-256 93ef609dd7afd598b2ea1e3223b82642aee7d342f9ca5fb3ee57fceb4a852836

See more details on using hashes here.

File details

Details for the file pfla-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for pfla-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 90a275ef6474c0b5372f54a810f26108cade8325929cf4e00ead122102613b47
MD5 92c8e31365561f818f6d339459dcd293
BLAKE2b-256 709363f10e4891e945b2596998c1d13bf7f9d6b3cc108a544420693516438b07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page