Skip to main content

Several tools for dealing with image annotations to train YOLO or similar models

Project description

Pflow

Install

pip install -e '.[dev]'

Setup

cp .env.default .env

Run

pflows doc/examples/birds-grouped-categories.json

In this example, we defined a workflow to download the dataset from Roboflow as we can see in the image below:

Birds Dataset

The workflow is defined in a JSON file, where we define the steps to be executed:

[
  {
    "task": "roboflow_tools.download_dataset",
    "target_dir": "{{BASE_FOLDER}}/datasets/downloaded/cub200_parts-50",
    "url": "https://universe.roboflow.com/explainableai-lavbv/cub200_parts/dataset/50"
  },
  {
    "task": "yolo_v8.load_dataset",
    "folder_path": "{{BASE_FOLDER}}/datasets/downloaded/cub200_parts-50"
  },
  {
    "task": "base.count_images"
  },
  {
    "task": "base.count_categories"
  },
  {
    "task": "categories.group_categories",
    "groups": {
      "upper": [["eye", "bill", "head", "nape", "throat"]],
      "lower": [["belly", "feet", "tail"]],
      "middle": [["Wing", "breast", "back"]],
      "Wing": [["Wing"]],
      "back": [["back"]],
      "belly": [["belly"]],
      "bill": [["bill"]],
      "eye": [["eye"]],
      "feet": [["feet"]],
      "head": [["head"]],
      "nape": [["nape"]],
      "tail": [["tail"]],
      "throat": [["throat"]]
    },
    "condition": "any"
  },
  {
    "task": "categories.keep",
    "categories": ["upper", "lower", "middle"]
  },
  {
    "task": "base.count_images"
  },
  {
    "task": "base.count_categories"
  },
  {
    "task": "base.show_categories"
  },
  {
    "task": "yolo_v8.write",
    "target_dir": "{{BASE_FOLDER}}/datasets/processed/birds-grouped-categories-cub200_parts-50"
  }
]

The workflow is composed of the following steps:

  1. Download the dataset from Roboflow
  2. Load the dataset
  3. Count the number of images
  4. Count the number of categories
  5. Group the categories, to create new categories based on the existing ones (upper, lower, middle)
  6. Keep only the categories that are in the groups "upper", "lower" and "middle"
  7. Count the number of images
  8. Count the number of categories
  9. Show the categories
  10. Write the dataset to disk

As we can see, we can use the {{BASE_FOLDER}} variable to refer to the base folder of the project. These variables are defined in the .env file, which is used to configure the project.

We can see the input images and output images below:

Example Bird 1:

Bird 1 before Bird 1 before

Example Bird 2:

Bird 2 before Bird 2 before

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pflows-0.1.16.tar.gz (5.4 MB view details)

Uploaded Source

Built Distribution

pflows-0.1.16-py3-none-any.whl (5.4 MB view details)

Uploaded Python 3

File details

Details for the file pflows-0.1.16.tar.gz.

File metadata

  • Download URL: pflows-0.1.16.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.4

File hashes

Hashes for pflows-0.1.16.tar.gz
Algorithm Hash digest
SHA256 82bcf76be8e2e3b4af22ac447af5d366149d5545f9ef4e4f42927db6f89bfcd1
MD5 e8a8d08fd62786bbebec3689b41860a4
BLAKE2b-256 949e416b29c6c80ff2fe553b2a94a0670f101c2242caf074ad516efb43acf065

See more details on using hashes here.

File details

Details for the file pflows-0.1.16-py3-none-any.whl.

File metadata

  • Download URL: pflows-0.1.16-py3-none-any.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.4

File hashes

Hashes for pflows-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 f6c18b528d71fb6c8dcfae37714ece3c2a28558ee5c11e6bfc0da54381249938
MD5 86ad9b9e131e8aff74618f51f9776229
BLAKE2b-256 196510c8edd8cb20b8750f40a9927e24daf9cbb53491cb0c410f1060f1c1c87c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page