Python interface to the C++ Spectra library
Project description
pfPySpectra
pfpyspectra based on pyspectra, Python interface to the C++ Spectra library
Eigensolvers
pfPySpecta offers two general interfaces to Spectra: eigensolver and eigensolverh. For general(dense&sparse) and symmetric(dense&sparse) matrices respectively.These two functions would invoke the most suitable method based on the information provided by the user.
Usage
import numpy as np
import scipy.sparse as sp
from pfpyspectra import eigensolver, eigensolverh
# matrix size
size = 100
# number of eigenpairs to compute
nvalues = 2
# Create random matrix
xs = np.random.normal(size=size ** 2).reshape(size, size)
new_xs=sp.rand(size, size, density=0.1, format='csc')
# Create symmetric matrix
mat = xs + xs.T
new_mat = new_xs + new_xs.T
# Compute two eigenpairs selecting the eigenvalues with
# largest magnitude (default).
eigenvalues, eigenvectors = eigensolver(xs, nvalues)
sprse_eigenvalues, sprse_eigenvectors = eigensolver(new_xs, nvalues)
# Compute two eigenpairs selecting the eigenvalues with
# largest algebraic value
selection_rule = "LargestAlge"
symm_eigenvalues, symm_eigenvectors = eigensolverh(
mat, nvalues, selection_rule)
sprse_symm_eigenvalues, sprse_symm_eigenvectors = eigensolverh(
mat, nvalues, selection_rule)
Note: The available selection_rules to compute a portion of the spectrum are:
- LargestMagn
- LargestReal
- LargestImag
- LargestAlge
- SmallestMagn
- SmallestReal
- SmallestImag
- SmallestAlge
- BothEnds
Eigensolvers Dense Interface
You can also call directly the dense interface. You would need to import the following module:
import numpy as np
from pfpyspectra import spectra_dense_interface
The following functions are available in the spectra_dense_interface:
-
general_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
general_real_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
general_complex_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift_real: float, shift_imag: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_generalized_shift_eigensolver( mat_A: np.ndarray, mat_B: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
Eigensolvers Sparse Interface
You can also call directly the sparse interface. You would need to import the following module:
import scipy as sp
from pfpyspectra import spectra_sparse_interface
The following functions are available in the spectra_sparse_interface:
-
sparse_general_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_general_real_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_general_complex_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift_real: float, shift_imag: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_generalized_shift_eigensolver( mat_A: sp.spmatrix, mat_B: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
Example
import numpy as np
from pfpyspectra import spectra_dense_interface
size = 100
nvalues = 2 # eigenpairs to compute
search_space = nvalues * 2 # size of the search space
shift = 1.0
# Create random matrix
xs = np.random.normal(size=size ** 2).reshape(size, size)
# Create symmetric matrix
mat = xs + xs.T
# Compute two eigenpairs selecting the eigenvalues with
# largest algebraic value
selection_rule = "LargestAlge"
symm_eigenvalues, symm_eigenvectors = \
spectra_dense_interface.symmetric_eigensolver(
mat, nvalues, search_space, selection_rule)
Note: All functions return a tuple whith the resulting eigenvalues and eigenvectors. For more examples, please see the directory:
pfpyspectra/tests/
Installation
To install pyspectra, do:
git clone git@gitee.com:PerfXLab/spectra4py.git
cd pyspectra
bash ./install.sh
Test
Run tests (including coverage) with:
pytest tests/test_dense_pyspectra.py
pytest tests/test_sparse_pyspectra.py
pytest tests/test_pyspectra.py
# also you can just `pytest tests`
Help: If you don't pass them all, don't worry, try a few more times.
I think that's because of the random parameter problem, It will not affect the use, can you help me?
License
No. Just for fun!
Thanks :
pyspectra,
C++ Spectra library
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pfpyspectra-0.1.0.tar.gz
.
File metadata
- Download URL: pfpyspectra-0.1.0.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7083f7287cff13a8ef6ebe4321254f2e0321e6959faf9cc512f02b9f0d51249d |
|
MD5 | 749a3227278a8826f9fd10b184a5afc4 |
|
BLAKE2b-256 | 035d2ff8155e17e9350e8fd654eada3eda9b321c74ec3abf24709327551e53e3 |