A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy
Project description
pg-database-utils
A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy.
This library includes support for:
TSVECTOR
,JSON
andJSONB
indexes (for PostgreSQL versions 9.5+)- Generated columns (for PostgreSQL versions 12+)
- Optional Django database configuration for Django projects
It also includes:
- Helpers to make most common DDL queries more readable
- Performant functions for querying JSON and TSVECTOR columns
- Support for
SELECT INTO
queries from existing tables and/orVALUES
clauses - Support for
UPDATE
queries that require application logic
Installation
Install with pip install pg_database_utils
.
Configuration
This libary can be configured to work without Django or along-side Django. Configuration involves two steps:
- Create a JSON configuration file
- Set the
DATABASE_CONFIG_JSON
environment variable to point to the location of the file
To configure this project along-side Django:
{
"django-db-key": "default"
}
If "django-db-key" is set, it will take precedence over other database connection settings
To configure this project by itself:
{
"database-name": "required", # Name of the database to query
"database-engine": "optional", # Defaults to postgres
"database-host": "optional", # Defaults to 127.0.0.1
"database-port": "optional", # Defaults to 5432
"database-user": "optional", # Defaults to postgres
"database-password": "optional" # For trusted users like postgres
}
Other configuration options include:
{
"date-format": "optional", # Defaults to "%Y-%m-%d" for converting date strings
"timestamp-format": "optional" # Defaults to "%Y-%m-%d %H:%M:%S" for converting datetime strings
}
Usage
One of the goals of this library is to make common database operations easy and readable.
Many of the utility functions therefore are designed to require as few imports from sqlalchemy
as possible.
Here are some of the available schema utilities
- Creating and relating tables
from pg_database import schema
schema.create_table(
"my_table",
dropfirst=True,
index_cols={"id": "unique"},
id="int", name="int", addr="text", deleted="bool"
)
schema.create_index("my_table", "name", index_op="unique")
schema.create_table("other_table", id="int", my_table_id="int", val="text")
schema.create_foreign_key("other_table", "my_table_id", "my_table.id")
- Altering tables
from pg_database import schema
schema.alter_column_type("my_table", "name", "text")
schema.create_index("my_table", "name", index_op="to_tsvector")
schema.create_column("my_table", "json_col", "jsonb", checkfirst=True)
schema.create_index("my_table", "json_col", index_op="json_full")
- Dropping tables
from pg_database import schema
all_tables = schema.get_metadata().tables
other_table = all_tables["other_table"]
schema.drop_foreign_key("other_table", "other_table_my_table_id_fkey")
schema.drop_index("my_table", index_name="my_table_json_col_json_full_idx")
schema.drop_table("my_table")
schema.drop_table("other_table")
- Inserting rows
import json
from datetime import datetime, timedelta
from pg_database import sql, schema
create_date = datetime.now()
sql.select_into(
"new_table",
[(1, "one", {}, create_date), (2, "two", {}, create_date), (3, "three", {}, create_date)],
"id,val,json,created",
"int,text,jsonb,date"
)
- Updating rows
from pg_database import sql
def update_row(row):
row = list(row)
pk = row[0]
val = row[1]
created = row[2]
jval = row[3]
row[1] = f"{pk} {val} first batch"
row[2] = created + timedelta(days=1)
row[3] = {"id": pk, "val": val, "batch": "first"}
return row
sql.update_rows("new_table", "id", "val,created,json", update_row, batch_size=3)
- Querying rows
from pg_database import sql, schema
schema.create_index("new_table", "json", index_op="json_path")
schema.create_index("new_table", "val", index_op="to_tsvector")
sql.query_json_keys("new_table", "json", {"batch": "first"})
sql.query_tsvector_columns("new_table", "val", "batch first")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pg_database_utils-0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4bddd61c5c98f950eafa5f497e0f114cbeb5de1abe6dc4c0c9240c9472c54e7 |
|
MD5 | c713e5dc7d40704cea1a12207a083a4e |
|
BLAKE2b-256 | e0de2bbd28a5b8ac80888c8bff9d86452d7401cc063382fc6e8fedfc132f6dd6 |