Skip to main content

A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy

Project description

pg-database-utils

Build StatusCoverage Status

A suite of utilities for PostgreSQL database queries and operations built on sqlalchemy.

This library includes support for:

  1. TSVECTOR, JSON and JSONB indexes (for PostgreSQL versions 9.5+)
  2. Generated columns (for PostgreSQL versions 12+)
  3. Optional Django database configuration for Django projects

It also includes:

  1. Helpers to make most common DDL queries more readable
  2. Performant functions for querying JSON and TSVECTOR columns
  3. Support for SELECT INTO queries from existing tables and/or VALUES clauses
  4. Support for UPDATE queries that require application logic

Installation

Install with pip install pg_database_utils.

Configuration

This libary can be configured to work without Django or along-side Django. Configuration involves two steps:

  1. Create a JSON configuration file
  2. Set the DATABASE_CONFIG_JSON environment variable to point to the location of the file

To configure this project along-side Django:

{
    "django-db-key": "default"
}

If "django-db-key" is set, it will take precedence over other database connection settings

To configure this project by itself:

{
    "database-name": "required",     # Name of the database to query
    "database-engine": "optional",   # Defaults to postgres
    "database-host": "optional",     # Defaults to 127.0.0.1
    "database-port": "optional",     # Defaults to 5432
    "database-user": "optional",     # Defaults to postgres
    "database-password": "optional"  # For trusted users like postgres
}

Other configuration options include:

{
    "date-format": "optional",      # Defaults to "%Y-%m-%d" for converting date strings
    "timestamp-format": "optional"  # Defaults to "%Y-%m-%d %H:%M:%S" for converting datetime strings
}

Usage

One of the goals of this library is to make common database operations easy and readable. Many of the utility functions therefore are designed to require as few imports from sqlalchemy as possible.

Here are some of the available schema utilities

  • Creating and relating tables
from pg_database import schema

schema.create_table(
    "my_table",
    dropfirst=True,
    index_cols={"id": "unique"},
    id="int", name="int", addr="text", deleted="bool"
)
schema.create_index("my_table", "name", index_op="unique")

schema.create_table("other_table", id="int", my_table_id="int", val="text")
schema.create_foreign_key("other_table", "my_table_id", "my_table.id")
  • Altering tables
from pg_database import schema

schema.alter_column_type("my_table", "name", "text")
schema.create_index("my_table", "name", index_op="to_tsvector")

schema.create_column("my_table", "json_col", "jsonb", checkfirst=True)
schema.create_index("my_table", "json_col", index_op="json_full")
  • Dropping tables
from pg_database import schema

all_tables = schema.get_metadata().tables
other_table = all_tables["other_table"]

schema.drop_foreign_key("other_table", "other_table_my_table_id_fkey")
schema.drop_index("my_table", index_name="my_table_json_col_json_full_idx")
schema.drop_table("my_table")
schema.drop_table("other_table")
  • Inserting rows
import json
from datetime import datetime, timedelta
from pg_database import sql, schema

create_date = datetime.now()

sql.select_into(
    "new_table",
    [(1, "one", {}, create_date), (2, "two", {}, create_date), (3, "three", {}, create_date)],
    "id,val,json,created",
    "int,text,jsonb,date"
)
  • Updating rows
from pg_database import sql

def update_row(row):
    row = list(row)
    pk = row[0]
    val = row[1]
    created = row[2]
    jval = row[3]
    row[1] = f"{pk} {val} first batch"
    row[2] = created + timedelta(days=1)
    row[3] = {"id": pk, "val": val, "batch": "first"}
    return row

sql.update_rows("new_table", "id", "val,created,json", update_row, batch_size=3)
  • Querying rows
from pg_database import sql, schema

schema.create_index("new_table", "json", index_op="json_path")
schema.create_index("new_table", "val", index_op="to_tsvector")

sql.query_json_keys("new_table", "json", {"batch": "first"})
sql.query_tsvector_columns("new_table", "val", "batch first")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pg_database_utils-0.2.tar.gz (28.1 kB view hashes)

Uploaded Source

Built Distribution

pg_database_utils-0.2-py3-none-any.whl (30.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page