Skip to main content

A simple wrapper for Python psycopg2 with connection pooling

Project description

The pg_simple module provides a simple yet efficient layer over psycopg2 providing Python API for common SQL functions, explicit and implicit transactions management and database connection pooling for single and multi-threaded applications.

pg_simple is not intended to provide ORM-like functionality, rather to make it easier to interact with the PostgreSQL database from python code for direct SQL access using convenient wrapper methods. The module wraps the excellent psycopg2 library and most of the functionality is provided by this behind the scenes.

The pg_simple module provides:

  • Simplified handling of database connections/cursor

  • Connection pool for single or multithreaded access

  • Python API to wrap basic SQL functionality: select, update, delete, join et al

  • Query results as python namedtuple and dict objects (using psycopg2.extras.NamedTupleCursor and psycopg2.extras.DictCursor respectively)

  • Debug logging support

Installation

With pip or easy_install:

pip install pg_simple

or:

easy_install pg_simple

or from the source:

python setup.py install

30 Seconds Quick-start Guide

  • Step 1: Initialize a connection pool manager using pg_simple.config_pool()

  • Step 2: Create a database connection and cursor by instantiating a pg_simple.PgSimple object

Here’s a pseudo-example to illustrate the basic concepts:

import pg_simple

connection_pool = pg_simple.config_pool(dsn='dbname=my_db user=my_username ...')

with pg_simple.PgSimple(connection_pool) as db:
    db.insert('table_name',
              data={'column': 123,
                    'another_column': 'blah blah'})
    db.commit()

with pg_simple.PgSimple(connection_pool) as db1:
    rows = db1.fetchall('table_name')

Connection pool management

Initialize the connection pool

import pg_simple

connection_pool = pg_simple.config_pool(max_conn=250,
                      expiration=60, # idle timeout = 60 seconds
                      host='localhost',
                      port=5432,
                      database='pg_simple',
                      user='postgres',
                      password='secret')

or, using dsn:

connection_pool = pg_simple.config_pool(max_conn=250,
                      expiration=60,
                      dsn='dbname=database_name user=postgres password=secret')

or, using db_url:

connection_pool = pg_simple.config_pool(max_conn=250,
                      expiration=60,
                      db_url= 'postgres://username:password@hostname:numeric_port/database')

The above snippets will create a connection pool capable of accommodating a maximum of 250 concurrent database connections. Once that limit is reached and the pool does not contain any idle connections, all subsequent new connection request will result in a PoolError exception (until the pool gets refilled with idle connections).

Take caution to properly clean up all pg_simple.PgSimple objects after use (wrap the object inside python try-finally block or with statement). Once the object is released, it will quietly return the internal database connction to the idle pool. Failure to dispose PgSimple properly may result in pool exhaustion error.

Configure multiple connection pools

To generate different connection pools simply define each connection:

connection_pool_1 = pg_simple.config_pool(max_conn=250,
                      expiration=60,
                      dsn='dbname=database_name_1 user=postgres1 password=secret1')

connection_pool_2 = pg_simple.config_pool(max_conn=250,
                      expiration=60,
                      dsn='dbname=database_name_2 user=postgres2 password=secret2')

After that you can use each connection pool object to generate connections to the databases as you would with only one connection. You can define as many of connection pool objects as your systems can handle and also both types (SimpleConnectionPool and ThreadedConnectionPool) at the same time.

Configure connection pool for thread-safe access

The default SimpleConnectionPool pool manager is not thread-safe. To utilize the connection pool in multi-threaded apps, use the ThreadedConnectionPool:

connection_pool = pg_simple.config_pool(max_conn=250,
                      expiration=60,
                      pool_manager=ThreadedConnectionPool,
                      dsn='...')

Disable connection pooling

To disable connection pooling completely, set the disable_pooling parameter to True:

connection_pool = pg_simple.config_pool(disable_pooling=True, dsn='...')

All database requests on this pool will create new connections on the fly, and all connections returned to the pool (upon disposal of PgSimple object or by explicitly invoking pool.put_conn()) will be discarded immediately.

Garbage collect stale connections

To explicitly purge the pool of stale database connections (whose duration of stay in the pool exceeds the expiration timeout), invoke the pool.purge_expired_connections() method:

connection_pool.purge_expired_connections()

Note that the pool is automatically scavenged for stale connections when an idle connection is returned to the pool (using the pool.put_conn() method).

Basic Usage

Connecting to the posgtresql server

The following snippet will connect to the posgtresql server and allocate a cursor:

import sys
import pg_simple

db = pg_simple.PgSimple(connection_pool, log=sys.stdout,
                        log_fmt=lambda x: '>> %s' % (x if isinstance(x, str) else x.query),
                        nt_cursor=True)

By default PgSimple generates result sets as collections.namedtuple objects (using psycopg2.extras.NamedTupleCursor). If you want to access the retrieved records using an interface similar to the Python dictionaries (using psycopg2.extras.DictCursor), set the nt_cursor parameter to False:

db = pg_simple.PgSimple(connection_pool, nt_cursor=False)

Raw SQL execution

>>> db.execute('SELECT tablename FROM pg_tables WHERE schemaname=%s and tablename=%s', ['public', 'books'])
<cursor object at 0x102352a50; closed: 0>

Dropping and creating tables

db.drop('books')

db.create('books',
          '''
"id" SERIAL NOT NULL,
"type" VARCHAR(20) NOT NULL,
"name" VARCHAR(40) NOT NULL,
"price" MONEY NOT NULL,
"published" DATE NOT NULL,
"modified" TIMESTAMP(6) NOT NULL DEFAULT now()
'''
)

db.execute('''ALTER TABLE "books" ADD CONSTRAINT "books_pkey" PRIMARY KEY ("id")''')
db.commit()

Emptying a table or set of tables

db.truncate('tbl1')
db.truncate('tbl2, tbl3', restart_identity=True, cascade=True)
db.commit()

Inserting rows

for i in range(1, 10):
    db.insert("books",
              {"genre": "fiction",
               "name": "Book Name vol. %d" % i,
               "price": 1.23 * i,
               "published": "%d-%d-1" % (2000 + i, i)})

db.commit()

Updating rows

with pg_simple.PgSimple(connection_pool) as db1:
    db1.update('books',
               data={'name': 'An expensive book',
                     'price': 998.997,
                     'genre': 'non-fiction',
                     'modified': 'NOW()'},
               where=('published = %s', [datetime.date(2001, 1, 1)]))

    db1.commit()

Deleting rows

db.delete('books', where=('published >= %s', [datetime.date(2005, 1, 31)]))
db.commit()

Inserting/updating/deleting rows with return value

row = db.insert("books",
                {"type": "fiction",
                 "name": "Book with ID",
                 "price": 123.45,
                 "published": "1997-01-31"},
                returning='id')
print(row.id)

rows = db.update('books',
                 data={'name': 'Another expensive book',
                       'price': 500.50,
                       'modified': 'NOW()'},
                 where=('published = %s', [datetime.date(2006, 6, 1)]),
                 returning='modified')
print(rows[0].modified)

rows = db.delete('books',
                 where=('published >= %s', [datetime.date(2005, 1, 31)]),
                 returning='name')
for r in rows:
    print(r.name)

Fetching a single record

book = db.fetchone('books',
                   fields=['name', 'published'],
                   where=('published = %s', [datetime.date(2002, 2, 1)]))

print(book.name + 'was published on ' + book[1])

Fetching multiple records

books = db.fetchall('books',
                    fields=['name AS n', 'genre AS g'],
                    where=('published BETWEEN %s AND %s', [datetime.date(2005, 2, 1), datetime.date(2009, 2, 1)]),
                    order=['published', 'DESC'],
                    limit=5,
                    offset=2)

for book in books:
    print(book.n + 'belongs to ' + book[1])

Explicit database transaction management

with pg_simple.PgSimple(connection_pool) as _db:
    try:
        _db.execute('Some SQL statement')
        _db.commit()
    except:
        _db.rollback()

Implicit database transaction management

with pg_simple.PgSimple(connection_pool) as _db:
    _db.execute('Some SQL statement')
    _db.commit()

The above transaction will be rolled back automatically should something goes awry.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pg_simple-0.2.4.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

pg_simple-0.2.4-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file pg_simple-0.2.4.tar.gz.

File metadata

  • Download URL: pg_simple-0.2.4.tar.gz
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for pg_simple-0.2.4.tar.gz
Algorithm Hash digest
SHA256 dbb1a5e8a68e2594c34fc5a9fac771e4adebb6f985e6408a6e16539368cbee75
MD5 6dc624a0de0833d7b25bf5be77b9efe8
BLAKE2b-256 38e42336a37f0a4f2ea2156c200c2c9eb4452def847306aeec0fb94d3086ab1e

See more details on using hashes here.

File details

Details for the file pg_simple-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: pg_simple-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for pg_simple-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 eaeabc9f42a8991ccccb376c5ff4281d61a8dfd35182349b20397224b799fc42
MD5 4cf27a5bdb5a0493b2b9362374d5cfbe
BLAKE2b-256 ce30a7a71d22c255084163fd41d825fba82b4c6c83c6075e26a6ad6392e91158

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page